ICS Advisory

Siemens SIDIS Prime

Release Date
Alert Code
ICSA-25-100-02

As of January 10, 2023, CISA will no longer be updating ICS security advisories for Siemens product vulnerabilities beyond the initial advisory. For the most up-to-date information on vulnerabilities in this advisory, please see Siemens' ProductCERT Security Advisories (CERT Services | Services | Siemens Global).

View CSAF

1. EXECUTIVE SUMMARY

  • CVSS v4 9.1
  • ATTENTION: Exploitable remotely/low attack complexity
  • Vendor: Siemens
  • Equipment: SIDIS Prime
  • Vulnerabilities: Race Condition Enabling Link Following, Improper Validation of Integrity Check Value, Unchecked Input for Loop Condition, Expected Behavior Violation, Incorrect Provision of Specified Functionality, Heap-based Buffer Overflow, Cleartext Transmission of Sensitive Information, Use After Free, NULL Pointer Dereference, Exposure of Sensitive Information to an Unauthorized Actor, Out-of-bounds Write, Improper Input Validation, Uncontrolled Resource Consumption

2. RISK EVALUATION

Successful exploitation of these vulnerabilities could allow an attacker to execute unauthorized deletions, cause denial of service, corrupt application state, leak sensitive information, or potentially execute remote code.

3. TECHNICAL DETAILS

3.1 AFFECTED PRODUCTS

Siemens reports that the following products are affected:

  • SIDIS Prime: All versions before V4.0.700

3.2 VULNERABILITY OVERVIEW

Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency. The Rust Security Response WG was notified that the std::fs::remove_dir_all standard library function is vulnerable to a race condition enabling symlink following (CWE-363). An attacker could use this security issue to trick a privileged program into deleting files and directories the attacker couldn't otherwise access or delete. Rust 1.0.0 through Rust 1.58.0 is affected by this vulnerability with 1.58.1 containing a patch. Note that the following build targets don't have usable APIs to properly mitigate the attack and are thus still vulnerable even with a patched toolchain: macOS before version 10.10 (Yosemite) and REDOX. It is recommended to update to Rust 1.58.1 as soon as possible, especially people developing programs expected to run in privileged contexts (including system daemons and setuid binaries), as those have the highest risk of being affected by this. Note that adding checks in your codebase before calling remove_dir_all will not mitigate the vulnerability, as they would also be vulnerable to race conditions like remove_dir_all itself. The existing mitigation is working as intended outside of race conditions.

CVE-2022-21658 has been assigned to this vulnerability. A CVSS v3 base score of 7.3 has been assigned; the CVSS vector string is (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:N/I:L/A:H).

A CVSS v4 score has also been calculated for CVE-2022-21658. A base score of 5.8 has been calculated; the CVSS vector string is (AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:L/VA:H/SC:N/SI:N/SA:N).

3.2.2 IMPROPER VALIDATION OF INTEGRITY CHECK VALUE CWE-354

The AES-SIV cipher implementation contains a bug that causes it to ignore empty associated data entries which are unauthenticated as a consequence. Applications that use the AES-SIV algorithm and want to authenticate empty data entries as associated data can be misled by removing adding or reordering such empty entries as these are ignored by the OpenSSL implementation. We are currently unaware of any such applications. The AES-SIV algorithm allows for authentication of multiple associated data entries along with the encryption. To authenticate empty data the application has to call EVP_EncryptUpdate() (or EVP_CipherUpdate()) with NULL pointer as the output buffer and 0 as the input buffer length. The AES-SIV implementation in OpenSSL just returns success for such a call instead of performing the associated data authentication operation. The empty data thus will not be authenticated. As this issue does not affect non-empty associated data authentication and we expect it to be rare for an application to use empty associated data entries this is qualified as a low-severity issue.

CVE-2023-2975 has been assigned to this vulnerability. A CVSS v3 base score of 5.3 has been assigned; the CVSS vector string is (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N).

A CVSS v4 score has also been calculated for CVE-2023-2975. A base score of 6.9 has been calculated; the CVSS vector string is (AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:L/VA:N/SC:N/SI:N/SA:N).

3.2.3 UNCHECKED INPUT FOR LOOP CONDITION CWE-606

Checking excessively long DH keys or parameters may be very slow. Applications that use the functions DH_check(), DH_check_ex() or EVP_PKEY_param_check() to check a DH key or DH parameters may experience long delays. Where the key or parameters that are being checked have been obtained from an untrusted source this may lead to a denial of service. The function DH_check() performs various checks on DH parameters. One of those checks confirms that the modulus ('p' parameter) is not too large. Trying to use a very large modulus is slow and OpenSSL will not normally use a modulus which is over 10,000 bits in length. However, the DH_check() function checks numerous aspects of the key or parameters that have been supplied. Some of those checks use the supplied modulus value even if it has already been found to be too large. An application that calls DH_check() and supplies a key or parameters obtained from an untrusted source could be vulnerable to a denial-of-service attack. The function DH_check() is itself called by a number of other OpenSSL functions. An application calling any of those other functions may similarly be affected. The other functions affected by this are DH_check_ex() and EVP_PKEY_param_check(). Also vulnerable are the OpenSSL dhparam and pkeyparam command line applications when using the '-check' option. The OpenSSL SSL/TLS implementation is not affected by this issue. The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue.

CVE-2023-3446 has been assigned to this vulnerability. A CVSS v3 base score of 5.3 has been assigned; the CVSS vector string is (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).

A CVSS v4 score has also been calculated for CVE-2023-3446. A base score of 6.9 has been calculated; the CVSS vector string is (AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N).

3.2.4 EXPECTED BEHAVIOR VIOLATION CWE-440

The POLY1305 MAC (message authentication code) implementation contains a bug that might corrupt the internal state of applications on the Windows 64 platform when running on newer X86_64 processors supporting the AVX512-IFMA instructions. If in an application that uses the OpenSSL library an attacker can influence whether the POLY1305 MAC algorithm is used, the application state might be corrupted with various application dependent consequences. The POLY1305 MAC (message authentication code) implementation in OpenSSL does not save the contents of non-volatile XMM registers on the Windows 64 platform when calculating the MAC of data larger than 64 bytes. Before returning to the caller all the XMM registers are set to zero rather than restoring their previous content. The vulnerable code is used only on newer x86_64 processors supporting the AVX512-IFMA instructions. The consequences of this kind of internal application state corruption can be various - from no consequences, if the calling application does not depend on the contents of non-volatile XMM registers at all, to the worst consequences, where the attacker could get complete control of the application process. However given the contents of the registers are just zeroized so the attacker cannot put arbitrary values inside, the most likely consequence, if any, would be an incorrect result of some application dependent calculations or a crash leading to a denial of service. The POLY1305 MAC algorithm is most frequently used as part of the CHACHA20-POLY1305 AEAD (authenticated encryption with associated data) algorithm. The most common usage of this AEAD cipher is with TLS protocol versions 1.2 and 1.3 and a malicious client can influence whether this AEAD cipher is used by the server. This implies that server applications using OpenSSL can be potentially impacted. However we are currently not aware of any concrete application that would be affected by this issue therefore we consider this a low-severity security issue. As a workaround the AVX512-IFMA instructions support can be disabled at runtime by setting the environment variable OPENSSL_ia32cap: OPENSSL_ia32cap=:~0x200000 The FIPS provider is not affected by this issue.

CVE-2023-4807 has been assigned to this vulnerability. A CVSS v3 base score of 7.8 has been assigned; the CVSS vector string is (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H).

A CVSS v4 score has also been calculated for CVE-2023-4807. A base score of 8.5 has been calculated; the CVSS vector string is (AV:L/AC:L/AT:N/PR:L/UI:N/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N).

3.2.5 INCORRECT PROVISION OF SPECIFIED FUNCTIONALITY CWE-684

A bug has been identified in the processing of key and initialization vector (IV) lengths. This can lead to potential truncation or overruns during the initialization of some symmetric ciphers. A truncation in the IV can result in non-uniqueness which could result in loss of confidentiality for some cipher modes. When calling EVP_EncryptInit_ex2(), EVP_DecryptInit_ex2() or EVP_CipherInit_ex2() the provided OSSL_PARAM array is processed after the key and IV have been established. Any alterations to the key length, via the "keylen" parameter or the IV length, via the "ivlen" parameter, within the OSSL_PARAM array will not take effect as intended, potentially causing truncation or overreading of these values. The following ciphers and cipher modes are impacted: RC2, RC4, RC5, CCM, GCM and OCB. For the CCM, GCM and OCB cipher modes, truncation of the IV can result in loss of confidentiality. For example, when following NIST's SP 800-38D section 8.2.1 guidance for constructing a deterministic IV for AES in GCM mode, truncation of the counter portion could lead to IV reuse. Both truncations and overruns of the key and overruns of the IV will produce incorrect results and could, in some cases, trigger a memory exception. However, these issues are not currently assessed as security critical. Changing the key and/or IV lengths is not considered to be a common operation and the vulnerable API was recently introduced. Furthermore, it is likely that application developers will have spotted this problem during testing since decryption would fail unless both peers in the communication were similarly vulnerable. For these reasons we expect the probability of an application being vulnerable to this to be quite low. However, if an application is vulnerable then this issue is considered very serious. For these reasons, this issue is assessed as moderate severity overall. The OpenSSL SSL/TLS implementation is not affected by this issue. The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this because the issue lies outside of the FIPS provider boundary. OpenSSL 3.1 and 3.0 are vulnerable to this issue.

CVE-2023-5363 has been assigned to this vulnerability. A CVSS v3 base score of 7.5 has been assigned; the CVSS vector string is (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N).

A CVSS v4 score has also been calculated for CVE-2023-5363. A base score of 8.7 has been calculated; the CVSS vector string is (AV:N/AC:L/AT:N/PR:N/UI:N/VC:H/VI:N/VA:N/SC:N/SI:N/SA:N).

3.2.6 UNCHECKED INPUT FOR LOOP CONDITION CWE-606

Generating excessively long X9.42 DH keys or checking excessively long X9.42 DH keys or parameters may be very slow. Applications that use the functions DH_generate_key() to generate an X9.42 DH key may experience long delays. Likewise, applications that use DH_check_pub_key(), DH_check_pub_key_ex() or EVP_PKEY_public_check() to check an X9.42 DH key or X9.42 DH parameters may experience long delays. Where the key or parameters that are being checked have been obtained from an untrusted source this may lead to a denial of service. While DH_check() performs all the necessary checks (as of CVE-2023-3817), DH_check_pub_key() doesn't make any of these checks and is therefore vulnerable for excessively large P and Q parameters. Likewise, while DH_generate_key() performs a check for an excessively large P, it doesn't check for an excessively large Q. An application that calls DH_generate_key() or DH_check_pub_key() and supplies a key or parameters obtained from an untrusted source could be vulnerable to a denial-of-service attack. DH_generate_key() and DH_check_pub_key() are also called by a number of other OpenSSL functions. An application calling any of those other functions may similarly be affected. The other functions affected by this are DH_check_pub_key_ex(), EVP_PKEY_public_check(), and EVP_PKEY_generate(). Also vulnerable are the OpenSSL pkey command line application when using the "-pubcheck" option, as well as the OpenSSL genpkey command line application. The OpenSSL SSL/TLS implementation is not affected by this issue. The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue.

CVE-2023-5678 has been assigned to this vulnerability. A CVSS v3 base score of 5.3 has been assigned; the CVSS vector string is (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).

A CVSS v4 score has also been calculated for CVE-2023-5678. A base score of 6.9 has been calculated; the CVSS vector string is (AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N).

3.2.7 HEAP-BASED BUFFER OVERFLOW CWE-122

A vulnerability was found in SQLite SQLite3 up to 3.43.0 and classified as critical. This issue affects the function sessionReadRecord of the file ext/session/sqlite3session.c of the component make alltest Handler. The manipulation leads to heap-based buffer overflow. It is recommended to apply a patch to fix this issue.

CVE-2023-7104 has been assigned to this vulnerability. A CVSS v3 base score of 5.5 has been assigned; the CVSS vector string is (CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L).

A CVSS v4 score has also been calculated for CVE-2023-7104. A base score of 5.1 has been calculated; the CVSS vector string is (AV:A/AC:L/AT:N/PR:L/UI:N/VC:L/VI:L/VA:L/SC:N/SI:N/SA:N).

3.2.8 CLEARTEXT TRANSMISSION OF SENSITIVE INFORMATION CWE-319

Microsoft.Data.SqlClient and System.Data.SqlClient SQL data provider security feature bypass vulnerability.

CVE-2024-0056 has been assigned to this vulnerability. A CVSS v3 base score of 8.7 has been assigned; the CVSS vector string is (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:N).

A CVSS v4 score has also been calculated for CVE-2024-0056. A base score of 9.1 has been calculated; the CVSS vector string is (AV:N/AC:H/AT:N/PR:N/UI:N/VC:H/VI:H/VA:N/SC:N/SI:N/SA:N).

3.2.9 USE AFTER FREE CWE-416

A heap use-after-free issue has been identified in SQLite in the jsonParseAddNodeArray() function in sqlite3.c. This flaw allows a local attacker to leverage a victim to pass specially crafted malicious input to the application, potentially causing a crash and leading to a denial of service.

CVE-2024-0232 has been assigned to this vulnerability. A CVSS v3 base score of 4.7 has been assigned; the CVSS vector string is (CVSS:3.1/AV:L/AC:H/PR:N/UI:R/S:U/C:N/I:N/A:H).

A CVSS v4 score has also been calculated for CVE-2024-0232. A base score of 5.7 has been calculated; the CVSS vector string is (AV:L/AC:H/AT:N/PR:N/UI:P/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N).

3.2.10 NULL POINTER DEREFERENCE CWE-476

Processing a maliciously formatted PKCS12 file may lead OpenSSL to crash leading to a potential denial-of-service attack. Applications loading files in the PKCS12 format from untrusted sources might terminate abruptly. A file in PKCS12 format can contain certificates and keys and may come from an untrusted source. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly check for this case. This can lead to a NULL pointer dereference that results in OpenSSL crashing. If an application processes PKCS12 files from an untrusted source using the OpenSSL APIs then that application will be vulnerable to this issue. OpenSSL APIs that are vulnerable to this are: PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes() and PKCS12_newpass(). A similar issue was also fixed in SMIME_write_PKCS7(). However, since this function is related to writing data it is not considered security significant. The FIPS modules in 3.2, 3.1 and 3.0 are not affected by this issue.

CVE-2024-0727 has been assigned to this vulnerability. A CVSS v3 base score of 5.5 has been assigned; the CVSS vector string is (CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H).

A CVSS v4 score has also been calculated for CVE-2024-0727. A base score of 6.8 has been calculated; the CVSS vector string is (AV:L/AC:L/AT:N/PR:N/UI:P/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N).

3.2.11 EXPOSURE OF SENSITIVE INFORMATION TO AN UNAUTHORIZED ACTOR CWE-200

Calling the OpenSSL API function SSL_select_next_proto with an empty supported client protocols buffer may cause a crash or memory contents to be sent to the peer. A buffer overread can have a range of potential consequences such as unexpected application behavior or a crash. In particular this issue could result in up to 255 bytes of arbitrary private data from memory being sent to the peer leading to a loss of confidentiality. However, only applications that directly call the SSL_select_next_proto function with a zero-length list of supported client protocols are affected by this issue. This would normally never be a valid scenario and is typically not under attacker control but may occur by accident in the case of a configuration or programming error in the calling application. The OpenSSL API function SSL_select_next_proto is typically used by TLS applications that support ALPN (Application Layer Protocol Negotiation) or NPN (Next Protocol Negotiation). NPN is older, was never standardized, and is deprecated in favor of ALPN. We believe that ALPN is significantly more widely deployed than NPN. The SSL_select_next_proto function accepts a list of protocols from the server and a list of protocols from the client and returns the first protocol that appears in the server list that also appears in the client list. In the case of no overlap between the two lists it returns the first item in the client list. In either case it will signal whether an overlap between the two lists was found. In the case where SSL_select_next_proto is called with a zero-length client list it fails to notice this condition and returns the memory immediately following the client list pointer (and reports that there was no overlap in the lists). This function is typically called from a server side application callback for ALPN or a client side application callback for NPN. In the case of ALPN the list of protocols supplied by the client is guaranteed by libssl to never be zero in length. The list of server protocols comes from the application and should never normally be expected to be of zero-length. In this case if the SSL_select_next_proto function has been called as expected (with the list supplied by the client passed in the client/client_len parameters), then the application will not be vulnerable to this issue. If the application has accidentally been configured with a zero-length server list, and has accidentally passed that zero-length server list in the client/client_len parameters, and has additionally failed to correctly handle a "no overlap" response (which would normally result in a handshake failure in ALPN) then it will be vulnerable to this problem. In the case of NPN, the protocol permits the client to opportunistically select a protocol when there is no overlap. OpenSSL returns the first client protocol in the no overlap case in support of this. The list of client protocols comes from the application and should never normally be expected to be of zero-length. However, if the SSL_select_next_proto function is accidentally called with a client_len of 0 then an invalid memory pointer will be returned instead. If the application uses this output as the opportunistic protocol then the loss of confidentiality will occur. This issue has been assessed as low severity because applications are most likely to be vulnerable if they are using NPN instead of ALPN - but NPN is not widely used. It also requires an application configuration or programming error. Finally, this issue would not typically be under attacker control making active exploitation unlikely. The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue. Due to the low severity of this issue, there is not a new release of OpenSSL at this time. The fix will be included in the next releases when they become available.

CVE-2024-5535 has been assigned to this vulnerability. A CVSS v3 base score of 5.9 has been assigned; the CVSS vector string is (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N).

A CVSS v4 score has also been calculated for CVE-2024-5535. A base score of 8.2 has been calculated; the CVSS vector string is (AV:N/AC:H/AT:N/PR:N/UI:N/VC:H/VI:N/VA:N/SC:N/SI:N/SA:N).

3.2.12 OUT-OF-BOUNDS WRITE CWE-787

Use of the low-level GF(2m) elliptic curve APIs with untrusted explicit values for the field polynomial can lead to out-of-bounds memory reads or writes. Out-of-bound memory writes can lead to an application crash or even a possibility of a remote code execution, however, in all the protocols involving elliptic curve cryptography that we're aware of, either only "named curves" are supported, or, if explicit curve parameters are supported, they specify an X9.62 encoding of binary (GF(2m)) curves that can't represent problematic input values. Thus, the likelihood of existence of a vulnerable application is low. In particular, the X9.62 encoding is used for ECC keys in X.509 certificates, so problematic inputs cannot occur in the context of processing X.509 certificates. Any problematic use-cases would have to be using an "exotic" curve encoding. The affected APIs include: EC_GROUP_new_curve_GF2m(), EC_GROUP_new_from_params(), and various supporting BN_GF2m_*() functions. Applications working with "exotic" explicit binary (GF(2m)) curve parameters, that make it possible to represent invalid field polynomials with a zero constant term, via the above or similar APIs, may terminate abruptly as a result of reading or writing outside of array bounds. Remote code execution cannot easily be ruled out. The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue.

CVE-2024-9143 has been assigned to this vulnerability. A CVSS v3 base score of 4.3 has been assigned; the CVSS vector string is (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:N).

A CVSS v4 score has also been calculated for CVE-2024-9143. A base score of 5.3 has been calculated; the CVSS vector string is (AV:N/AC:L/AT:N/PR:L/UI:N/VC:N/VI:L/VA:N/SC:N/SI:N/SA:N).

3.2.13 IMPROPER INPUT VALIDATION CWE-20

Microsoft identity denial-of-service vulnerability.

CVE-2024-21319 has been assigned to this vulnerability. A CVSS v3 base score of 6.8 has been assigned; the CVSS vector string is (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:C/C:N/I:N/A:H).

A CVSS v4 score has also been calculated for CVE-2024-21319. A base score of 6.9 has been calculated; the CVSS vector string is (AV:N/AC:L/AT:N/PR:H/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N).

3.2.14 UNCONTROLLED RESOURCE CONSUMPTION CWE-400

.NET and Visual Studio denial-of-service vulnerability.

CVE-2024-30105 has been assigned to this vulnerability. A CVSS v3 base score of 7.5 has been assigned; the CVSS vector string is (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H).

A CVSS v4 score has also been calculated for CVE-2024-30105. A base score of 8.7 has been calculated; the CVSS vector string is (AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N).

3.3 BACKGROUND

  • CRITICAL INFRASTRUCTURE SECTORS: Chemical, Critical Manufacturing, Energy, Food and Agriculture, Water and Wastewater Systems
  • COUNTRIES/AREAS DEPLOYED: Worldwide
  • COMPANY HEADQUARTERS LOCATION: Germany

3.4 RESEARCHER

Siemens ProductCERT reported these vulnerabilities to CISA.

4. MITIGATIONS

Siemens has released a new version of SIDIS Prime and recommends updating to the latest version:

  • SIDIS Prime: Update to V4.0.700 or a later version

As a general security measure, Siemens recommends protecting network access to devices with appropriate mechanisms. To operate the devices in a protected IT environment, Siemens recommends configuring the environment according to Siemens' operational guidelines for industrial security and following recommendations in the product manuals.

Additional information on industrial security by Siemens can be found on the Siemens industrial security webpage

For more information see the associated Siemens security advisory SSA-277137 in HTML and CSAF.

CISA recommends users take defensive measures to minimize the risk of exploitation of these vulnerabilities, such as:

  • Minimize network exposure for all control system devices and/or systems, ensuring they are not accessible from the internet.
  • Locate control system networks and remote devices behind firewalls and isolating them from business networks.
  • When remote access is required, use more secure methods, such as Virtual Private Networks (VPNs). Recognize VPNs may have vulnerabilities, should be updated to the most recent version available, and are only as secure as the connected devices.

CISA reminds organizations to perform proper impact analysis and risk assessment prior to deploying defensive measures.

CISA also provides a section for control systems security recommended practices on the ICS webpage on cisa.gov. Several CISA products detailing cyber defense best practices are available for reading and download, including Improving Industrial Control Systems Cybersecurity with Defense-in-Depth Strategies.

CISA encourages organizations to implement recommended cybersecurity strategies for proactive defense of ICS assets.

Additional mitigation guidance and recommended practices are publicly available on the ICS webpage at cisa.gov in the technical information paper, ICS-TIP-12-146-01B--Targeted Cyber Intrusion Detection and Mitigation Strategies.

Organizations observing suspected malicious activity should follow established internal procedures and report findings to CISA for tracking and correlation against other incidents.

CISA also recommends users take the following measures to protect themselves from social engineering attacks:

No known public exploitation specifically targeting these vulnerabilities has been reported to CISA at this time.

5. UPDATE HISTORY

  • April 10, 2025: Initial Publication

This product is provided subject to this Notification and this Privacy & Use policy.

Vendor

  • Siemens