

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

REPORT TO THE CISA DIRECTOR

Technical Advisory Council

Open Source Security

October 11, 2024

Introduction:

The Cybersecurity and Infrastructure Security Agency (CISA) Cybersecurity Advisory Committee (CSAC) established a

Technical Advisory Council (TAC) subcommittee (hereinafter referred to as the “subcommittee”) to help CISA—in line with

its Secure by Design goals—can encourage companies to be better stewards of the open source software they depend on

and produce.

Continued high impact and high profile security incidents related to software vulnerabilities in commercial and Open

Source Software (OSS) has drawn the attention of news media and governments worldwide. Increasingly complex

software supply chains and product dependencies have become frequent targets for organized crime and nation states,

seen as legitimate targets with a low barrier to entry and high reward. As great nation competition escalates, we expect

the targeting of the open source software ecosystems to increase. In this environment, the status quo of willful ignorance

of security in software dependencies will not be sufficient to provide the resilience, assurance, or stability necessary to

protect against these threat actors and allow the public to reap the benefits of OSS.

CISA began their Secure By Design initiative in 2023 [1] to raise awareness, provide guidance, and build voluntary

standards. It shifts the terminology to talking about software defects as predictable outcomes of not following Secure By

Design principles. The subcommittee believes this is a welcome departure from accepting software vulnerabilities as an

inevitable outcome of the modern development lifecycle.

Although the path to improved security for commercial software is fairly straightforward because it responds to all the

“normal” market and regulatory incentives, such as market share and liability, the OSS environment largely does not.

OSS is in an environment driven by community projects, individual contributors, and commercial developers often

supporting just the OSS components on which their products rely. Open source software intentionally comes as is,

without warranties or conditions of any kind. Underfunded OSS non-profit foundations can struggle in paying for

development, and “Freemium” business models have not been sufficient to meet the need.

For example, the popular web server Nginx, owned by F5, is sold as an enterprise product and also provided in a free

“community” version. Many innovations come from the community but then get incorporated and supported only in the

enterprise version. The free/enterprise tiering structure is a common way to grow market share and product familiarity,

and Nginx has about 34% of the web servers observed online. [2] However, if security improvements only are available in

a premium or enterprise version, this can create incentives to ‘save’ on costs with a less secure version, to the detriment

of the overall security of the ecosystem.

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

The questions asked by CISA, below, are the basis for our discussion and recommendations around OSS.

● How should CISA encourage the adoption of safe consumption norms for open source software, while also

encouraging companies to contribute fixes and enhancements back to the open source projects?

● How should CISA work to encourage these norms and contributions from federal agencies?

● How can CISA shift the burden of securing open source software to rest on those companies who routinely build

commercial products by offering modified versions of the open source project for a fee, often withholding

capabilities from the free version to incentivize consumers’ purchase of the enhanced version?

● Are there additional recommendations for CISA to (a) support secure by design outcomes in AI systems that are

distributed under open source compatible terms, or (b) protect both the public and private sector from potential

harms from misuse of foundation AI models with widely available model weights?

Background on Open Source Software

Over the last several decades, open source software has continued to increase in importance, and is now woven into

most aspects of society, creating an estimated $8 trillion dollars in aggregate value [3]. OSS plays fundamental roles not

only in computing and online services (e.g. Linux and most Internet infrastructure), but also critical roles in

telecommunications, science, Industrial Control Systems (ICS), Operating Technologies (OT), and government at all levels.

According to the State of the Software Supply Chain report, about 80-90% of modern applications are of open source

origin, or include open source components [4].

Accordingly, “avoiding” the use of OSS is not a realistic option — we are well beyond that point, and in fact wide-spread

use of OSS is a global competitive advantage for productivity and innovation. In response to the increased dependence

on OSS in critical functions, the Federal government created the Office of the National Cyber Director (ONCD) within the

White House, which now has a national strategy for OSS [5], as well as DHS’ increased focus on OSS [6], both through

CISA [7] and the Cyber Safety Review Board. [8]

Wikipedia provides a good overview of OSS, starting with a broad definition: “Free and open-source software (FOSS) is

software that is available under a license that grants the right to use, modify, and distribute the software, modified or not,

to everyone free of charge. The public availability of the source code is, therefore, a necessary but not sufficient

condition. FOSS is an inclusive umbrella term for free software and open-source software.[a] FOSS is in contrast to

proprietary software, where the software is under restrictive copyright or licensing and the source code is hidden from the

users.”a

Within this broad definition, there is an even more complicated space, including myriad software licensing regimes such

as Apache, BSD, GNU General Public License (GPL), or MIT, some of which can be incompatible with others. Moreover,

some widely used OSS projects have changed their licenses, sometimes to different open source licenses, and

sometimes to go closed source in order to create commercial offerings.b With increasing frequency, open source software

vendors with commercial backing are relicensing their software with a “source available” license model that restricts

a In this document we use “Open Source Software,” to be inclusive of Free and Open Sources as described. As Wikipedia

explains, “Although there is an almost complete overlap between free-software licenses and open-source-software

licenses, there is a strong philosophical disagreement between the advocates of these two positions. The terminology of

FOSS was created to be neutral on these philosophical disagreements between the Free Software Foundation (FSF) and

Open Source Initiative (OSI) and have a single unified term that could refer to both concepts.” [9]
b For a list of open source licenses, and their license’s features, see Wikipedia[16]

https://www.sonatype.com/hubfs/1-2023%20New%20Site%20Assets/SSCR/8th-Annual-SSCR-digital-0206%20update.pdf
https://www.cisa.gov/opensource
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open-source_software

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

third-party use. These vendors usually require a Contributor License Agreement (CLA) that permits relicensing of

contributed code. The Open Source Initiative tracks over 115 different types of licenses. [10]

The corollary to Open Source Software is Open Source Hardware (OSHW)c, which raises many of the same concerns and

issues. For the purposes of this report, OSHW comes under the same umbrella of issues with which OSS must contend.

The US Government, NGOs, and commercial providers have been identifying gaps in the OSS ecosystem for as long as it

has existed. The difference now is the consequences of software defects and vulnerabilities are much greater than in the

past and supply chain attacks are growing in frequency and scope. Shared software, tooling, supply chains, and

manufacturers means a defect in one piece of code can have wide and unforeseen impacts. Software development

builds complex systems by interlocking thousands of small, rigid pieces together, such that the failure of any one piece

can propagate cracks throughout the entire system.

Scope

The complexity of this problem space can be incredibly alluring to pontificate. There are many expert opinions delving into

the nuances of software licensing, incentive structures, and liability. The subcommittee recognizes that many aspects of

OSS security have been considered before, and there are excellent documents exploring all the various pathways.

Accordingly, this document will focus on areas the subcommittee feels are underrepresented and ripe for improvement

that would benefit those participating in the OSS space. This report only briefly references some of the pre-existing work,

which describe problem areas, proposes maturity models, and recommends best practices for implementers, focusing

instead on the underrepresented areas.

The practice of adopting and incorporating OSS safely is not a new concept, and there exists prior work that explores this

topic from different perspectives. A small subset includes the following: “Securing the Software Supply Chain:

Recommended Practices for Managing Open-Source Software and Software Bill of Materials” [11], The Secure Supply

Chain Consumption Framework (S2C2F) [12], Principles for Package Repository Security, The Securing Software

Repositories Working Group (WG) of the OpenSSF [13], Surviving Software Dependencies [14].

Outside the US, the European Union has notably created the Cyber Resilience Act (CRA) [15], which was formally

approved by the European Parliament in March 2024, and is designed to increase software security with cybersecurity

regulations and potential liability. The CRA’s initial draft generated criticism from the open source community, which can

help inform the committee of potential policy pitfalls.[20]

Core Problems to Solve

Most of the work to date on “safe” open source consumption has centered around two core questions that try to

understand the risks. First, end users and software developers are trying to understand the dependencies of their

c Open-source hardware (OSHW) consists of physical artifacts of technology designed and offered by the open-design

movement [17]. Both free and open-source software (FOSS) and open-source hardware are created by this open-source

culture movement[18] and apply a like concept to a variety of components. It is sometimes, thus, referred to as FOSH

(free and open-source hardware). The term usually means that information about the hardware is easily discerned so that

others can make it – coupling it closely to the maker movement [19].

https://en.wikipedia.org/wiki/Open-design_movement
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Open-source#Society
https://en.wikipedia.org/wiki/Maker_culture

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

software choices: What additional OSS is required for this OSS I want to consume to function? Second, what are the

versions of the various OSS components that will be required?

In addition, there is a foundational question of how to bridge the cultural gap between the legal contract-driven norms of

commercial consumers and the social-contract driven cultural norms of OSS developers. This must be addressed in the

process of balancing recommendations to solving the first two core questions.

The OSS ecosystem is composed of diverse developers, some paid, but more often not paid. Companies often rely on the

enforceability of legal contracts to define and enforce norms. However, the OSS ecosystem often operates on community-

driven values to inspire the development such as reputation, kindness, or personal development. This makes it

sometimes a challenge to get these volunteer developers to respond with the urgency required by certain safety-critical

norms of commercial entities. Simply put, it can be hard, not to mention unreasonable, for a commercial entity to

convince an unpaid volunteer to drop all their other priorities and fix an issue, even an urgent security issue, on the time

scale the commercial entity would expect of itself.

The Need for an Accountable Intermediary

The fundamental challenge in this space is that OSS in general is clearly labeled as “as is” software with no promises of

fitness and no liability. This puts the accountability for security squarely on the consumer of OSS, and not its producers or

maintainers. Conversely, governments and others set high-level requirements that must be met, putting the

accountability squarely on the producers.

These are both valid world views for how software should work, but they are obviously incompatible on the surface. The

solution in general is to have an accountable intermediary that bridges this gap, sometimes called a curator. When Red

Hat sells Linux with various support promises they are playing this role: Red Hat is the accountable producer in the eyes

of the consumer even though they receive OSS from the community as is with no promises. They do the work to ensure

compliance is met despite whatever issues might exist in the raw Linux upstream.

It is important to name this as a “role” because many parties can play this role. An OSS community can choose to play

versions of this role themselves, for example FreeBSD recently decided to help its consumers meet Federal Secure

Software Development Framework (SSDF) requirements [21]. When companies centralize management of open-source

packages, the central team is typically playing this role for internal consumers, including managing security patches. One

option for the Federal government would be for one agency to play this role for not only other agencies, but for State,

Local, Tribal, and Territorial (SLTT) governments as well.

When consumers use OSS directly, they implicitly assume this role, often without realizing it. Doing this role well can be a

significant burden and cost, but for critical infrastructure we collectively need to make sure it gets done.

The ability to pay a group to play this role is nascent, but this kind of outsourcing is critical to broad improvements to

security. Such curators are better equipped than most companies to fulfill the role and they get significant benefits from

specialization and scale. Improved tooling and the use of AI will further increase the relative benefits of paid curators.

Because the role of the accountable intermediary is fundamental, it will return throughout the rest of this report.

There are additional problems when trying to make an informed OSS consumption decision. First, there is no

standardized method for an OSS consumer to identify if a project has performed any software assurance work. There is

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

also no standard method for an OSS project to share the level of security assurance work they have performed. This

includes the different threat models that have been considered, the fuzzing tests performed, code coverage, static

analysis rules, dynamic analysis results, software compiler flags for binaries, and many other features covered by the

National Institute of Standards and Technology (NIST) standard on the Secure Software Development Lifecycle (SSDF)

[22]. There are many kinds of metadata that describe the security environment in which software, or a project exists, the

issue is there are few standard ways of expressing or collecting them.

Second, there is no standardized method to describe operational supply-chain security. When consuming binaries and

source code from an OSS project the consumer inherits transitively any vulnerabilities, or attacks against, their supply

chain. Currently, there is no reliable way of assessing a project’s operational security when making consumption

decisions. An open source developer might manage a project with outdated security patches without consumers knowing.

A project may have the latest security and risk models in place, but there is no standardized way to communicate the

exact security measures taken by a project to its consumers.

Finally, there is no common method to understand software “certifiability”. For example, US Government customers often

require Federal Information Processing Standards (FIPS) or other certification methods for open source libraries related

to cryptography. There is no standard or simple way to describe what work has been done on a given piece of software

that supports a given certification. This leads to a lot of duplicated work, where each vendor re-validates the same code

to be compliant. A more efficient method would be to have a mechanism to publish what code has met a given

requirement, and what still needs to be worked on. This would allow more of a community response instead of individual

contributors duplicating work.

Solving any of these problems would be valuable in improving software security, but taken together each reinforces the

other, which would lead to a generational improvement. In all three cases, the use of a curator can speed up adoption, as

the intermediaries can act as both a mechanism of standardization and a reduction of duplicate work.

Software Bill of Materials (SBOM)

Currently one method of addressing these challenges is by analyzing a Software Bill Of Materials (SBOM) for the OSS you

want to consume. The SBOM is an evolving standard that provides improved transparency over “what” is inside a given

piece of software.

SBOM helps end-users with strict security and compliance requirements, such as financial institutions and regulated

enterprises, make better informed choices about what software to consume. The SBOM should provide a detailed list of

all the components, dependencies, and libraries included in a piece of software, and helps the end-user track and

manage the software’s security history. If the SBOM reveals old versions of software or those with known security

vulnerabilities, end users might choose a less risky version, if available.

The Strengths and Challenges of the SBOM

An SBOM is currently most useful when end users need to rapidly identify what software sub-components, including their

particular versions, are deployed in their infrastructure. The utility was shown by the response to the log4shell

vulnerability. Organizations that had SBOMs could rapidly determine what software used log4j and see if it was a

vulnerable version. Then these organizations could save time and effort by focusing their remediation efforts on the

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

identified systems. Those without an SBOM for their deployed systems had to perform a time-consuming audit of all their

infrastructure, looking for log4j and identifying its version one by one.

Beyond the strong utility helping to remediate large-scale vulnerabilities, SBOMs are also quite useful for preventative

measures. For example, a software development team could use the SBOM to look for possible problems associated with

an OSS component before they start consuming it. The SBOM reveals the dependencies of the OSS component, as well

as identify the subcomponents included, along with version numbers and possibly other data. This information helps the

development team understand whether the parts involved are current or out of date, or perhaps includes previously

discovered defects, showing that the maintainer is not keeping current. This provides the development team with an

understanding of the additional reliability and security risks they will be inheriting should they select this OSS component.

A good example is the public tool, provided by Open Source Insights, which shows the known vulnerabilities for a wide

range of OSS packages and includes (transitively) the vulnerabilities inherited from dependencies [23].

Despite this high potential, SBOMs in practice have significant limitations. There are multiple “standards” that are largely

not interoperable (e.g. SPDX and CycloneDX), which is particularly problematic for composition. Ideally, the SBOM of a

package would be easily computed from the SBOMs of its components, even if they used different formats.

The tooling remains in early stages, in part due to complex and conflicting standards, leaving many users to generate

SBOMs primarily for compliance, without receiving all of the actual benefits.

It is also common today for an SBOM to miss some components, especially if it is computed from a deployable artifact

(like a binary), rather than generated during the process of its construction. Ideally, SBOMs should be generated as part

of a trusted build process, after which they can also be signed for authentication. However, build systems are complex

and often customized, making it difficult to add this capability broadly. Similarly, although SBOMs could be used during

development to make better consumption choices, that process is rare today, as it is not yet integrated into the

development process.

Finally, intermediate repositories are needed, such as package managers and Docker container repositories, to support

SBOMs for their artifacts. This is nascent today. Without such support consumers must compute SBOMs after the fact on

their own.

SBOMs have a goal of helping consumers of software understand the security of dependencies. However, SBOMs

currently only tell a consumer what dependencies have been consumed. They do not address whether those

dependencies are secure. If consumers want to understand the supply chain security or Software Development Lifecycle

(SDL) applied to a dependency, SBOMs will not provide that. Consumers must care not only about the contents, but also

the processes used to create packages or other artifacts.

The Supply-chain Levels for Software Artifacts (SLSA) is a security framework, which provides a checklist of standards

and controls to prevent tampering, improve integrity, and secure packages and infrastructure [24]. The SLSA framework

establishes process goals that should be followed to address supply-chain security risks. These goals include things such

as using a trusted build process and producing signatures and secure hashes for produced artifacts for authentication

and tamper prevention. SLSA and SBOMs are complementary [25]. In fact, it is hard to trust an SBOM unless these SLSA

process goals are also met.

https://ociocisa-my.sharepoint.com/personal/xavier_stewart_cisa_gov/Documents/Documents/provided

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

Overall, CISA should push for adoption of both SBOMs and SLSA and establish recommended formats for both kinds of

attestations that enable interoperability and especially composition. Ideally, artifacts like packages should not only come

with authenticated SBOM and SLSA information, but such metadata should be delivered in a way that can be combined

with that of other ingredients to build the correct SBOM and attestations at the next level up. This is not an easy goal, but

it is fundamental to safe consumption given the deeply nested nature of consumption.

Curators, the accountable intermediaries discussed above, can play an important role in driving towards effective

composition by ensuring that their packages produce high-quality metadata, including interoperable SBOMs and signed

SLSA provenance information. They will need to solve these problems for the packages they import and thus can help

drive towards better consistency across OSS packages.

Longer term, package metadata can provide transparency for many different kinds of security practices, such as what

kind of security testing has been done, use of multi-factor authentication, and other indicators of security best practice

maturity.

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

CISA Questions

Question 1: How should CISA encourage the adoption of safe consumption norms for open source software, while also

encouraging companies to contribute fixes and enhancements back to the open source projects? How should CISA work

to encourage these norms and contributions from federal agencies?

Safe Consumption Norms

Safe Consumption of OSS is part of the totality of the software and project lifecycle. Safe Consumption should consider

safe use, the user / developer feedback lifecycle to the OSS maintainers, notification to users of important issues, and

ultimately lay the groundwork for the safe transfer or shutdown of a project.

The practice of adopting and incorporating OSS safely is not a new concept, and there exists prior work that explores this

topic from different perspectives. A small subset includes the following: “Securing the Software Supply Chain:

Recommended Practices for Managing Open-Source Software and Software Bill of Materials” [11], The Secure Supply

Chain Consumption Framework (S2C2F) [12], “Principles for Package Repository Security” - The Securing Software

Repositories Working Group (WG) of the OpenSSF [13] and their SLSA specification [24]. Outside the US, the European

Union has drafted the Cyber Resilience Act (CRA). [15]

The EU CRA endeavors to address the issues legislatively, by imposing liability and other legal requirements. In 2027,

vendors that do not comply with the CRA won't be able to sell products in the EU, so US companies that intend to sell in

the EU will need to adapt.

When considering safe consumption, it can be helpful to look at how OSS projects maintain their source code, and how

they send and receive updates upstream and downstream to consumers of their OSS. “Downstream” refers to software

that is created by the original authors or maintainers, and distributed as source code flowing “down”, often to other

developers or consumers for potential inclusion in their software. “Upstream” refers to code sent by these users back

upstream to the original development team for inclusion in the original project. [26][27] Together they are part of the key

innovation of OSS, a circular life cycle, which often gets improved or customized by the users.

Downstream: Consuming OSS

When consuming OSS software, staying up to date is important. As NIST noted in the Secure Software Development

Framework, developed using downstreamed software should "[o]btain provenance information (e.g., SBOM, source

composition analysis, binary software composition analysis) for each software component,” and “[i]mplement processes

to update deployed software components to newer versions."[21]

The primary value of staying up to date is that it enables a fast response when a vulnerability is discovered. For critical

systems in particular, they must be prepared in advance to apply security patches quickly. The farther out of date a

system is the harder it becomes to patch. Typically, the security patch only applies to the current version, so the

consumer must either get up to date to apply it or rewrite it to apply to their out-of-date system. The more out of date the

system is, the worse either process will be.

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

Staying up to date is particularly important for online systems. However, many mostly offline systems, including air-

gapped systems and embedded systems, such as automobiles, limit updates in favor of reliability and well-understood

behavior. Such systems must instead put more effort in up front to limit and/or harden their dependencies.

Today, most organizations leave consumption issues to their developers, which naturally leads to inconsistent practices.

The difficulty of doing consumption well leads to both more centralization and more processes, at least in larger

organizations. The process of identifying when updates are required differs based on the method of consumption. There

are three primary methods today for consuming open source:

1) Decentralized and in control of developers (The YOLOd method)

Developers within large software companies self-manage what, where, when OSS is consumed. This distributes

the onus of updating OSS software onto these developers and can carry clear risks for the organization.

2) Decentralized with scanners

Software companies allow developers to manage dependencies but leverage a scanner to determine if those

dependencies are safe. An improvement to the YOLO method but leaves a number of gaps: OSS dependencies

are not always clearly observable from a scanner's vantage point, and scanners are imperfect detectors, so

outdated or vulnerable dependencies may continue to go undetected.

3) Centralized safe consumption

Large software companies create “known good” software repositories where projects that are in demand are

maintained centrally. This includes managing supply chain, infrastructure, and security updates. It represents a

significant resource cost but is more efficient than having each team do it individually. However, centralized

systems also provide a single point of failure.

Centralized safe consumption is a form of curation. The curators are accountable for various security properties of their

managed code, and they apply patches as needed to reduce risk or increase fitness. Consumption from a (paid) curator

can greatly increase the actual level of safe consumption. This is a nascent area that we discuss more under Question 3.

Another important focus for downstream consumers is the choice of which packages to consume. Many packages,

despite widespread use, are not good choices from a security perspective. They may have an unhealthy community,

depend on a single developer, eschew security updates, or otherwise not be following best practices.

The open source community on GitHub has developed a culture around dynamic badges or shields [28] rendered in the

project’s markdown README to succinctly display markets of project health, including whether the last commit builds

and passes its tests, test code coverage, and various other metrics or ratings. The u-root project’s README is an example

of a project with these dynamic project health badges [29]. Badges such as these could be used to prominently report

and display a project’s security health.

d “You Only Live Once.” The YOLO acronym has become an aphorism that expresses the view that one is focused on the

present moment and not worrying about possible consequences, taking on the risk.

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

Open source security health metrics tools, like the OpenSSF Scorecard [30], provide a structured, automated way to

assess and mitigate the risks of using third-party libraries in your codebase. This tool allows enterprises to look beyond

code vulnerabilities and evaluate adherence to broader security best practices.

The OpenSSF Scorecard provides a comprehensive set of checks that delve into various aspects of a project's security

posture. For example, it scrutinizes the presence of a security policy and a code review process, indicating a project's

commitment to secure development practices. Additionally, it verifies the use of branch protection mechanisms and

signed releases, which can prevent unauthorized code modifications and ensure the integrity of software artifacts.

The Scorecard's analysis extends beyond code vulnerabilities, considering factors like the bus factor (number of

maintainers), the project's maintenance state, and the presence of a security contact. This is crucial because

unmaintained projects, or those with a single maintainer, are potential security liabilities if vulnerabilities go unpatched

or ownership transfers to a malicious actor.

By incorporating the Scorecard's results into their decision-making process, enterprises can identify these red flags

before integrating third-party libraries, minimizing the risk of introducing vulnerabilities and insecure practices into their

own software supply chain. Moreover, the Scorecard can serve as a standardization metric for evaluating security

curators who provide secured OSS components, ensuring a baseline level of security across the industry.

Upstream: Contributing Back

By providing their source code, the original authors allow the downstream consumer to more easily review and modify the

software, for example, to fix security issues or add required features specific to their situation. Of course, after making

the modifications, the revised code will still need maintenance.

This can create an ongoing burden on the downstream consumer, including making it hard to accept security patches.

Because the original OSS project does not have their modification the consumer must apply the patch, and then re-apply

their own modifications, which might need refining. This disincentivizes the down-stream consumer from staying up to

date with patches, at a cost to security.

Upstreaming these changes can eliminate this burden. By submitting the improvements to the main OSS project, the

maintenance burden will be shifted to the OSS project and shared by the community, and future security patches will be

easy to consume. More important for OSS security, upstreaming security-relevant fixes increases security for other users

of the project.

Unfortunately, upstreaming changes to OSS can have a lot of friction. For example, the OSS project may have specific

code quality norms, which could require adjusting the submission. Some projects require a copyright assignment for

contributed code, which can create friction if the contributor has a cautious or bureaucratic legal department.e

Nonetheless, successful projects such as the Linux kernel show that upstreaming changes can be a critical enabler of

quality open source software.

e OSS projects must be able to license all the code under their open source license. Thus, the copyright must either be

assigned to the project or licensed to the project with a compatible license.

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

There is some nuance when discussing the contribution of fixes vs. enhancements to OSS projects. Fixes, including

security fixes, tend to be narrow in scope and do not change the intended behavior. A code enhancement, on the other

hand, may add entirely new functionality not included or even contemplated by the original software developers. The

upstream maintainers may not accept such added functionality but will typically accept security fixes. To include new

functionality is to implicitly accept the responsibility and overhead of maintaining it.

At the same time, from a corporate liability perspective it is easier for a company employee to submit a bug report to fix

an issue with OSS that is being used at the company than it is for the employee to submit new functionality that may

inadvertently reveal company intellectual property (IP) or strategy.

Large projects like the Linux kernel demonstrate another benefit of upstreaming changes, the complex social norms of

open source software development. Many OSS projects are either explicitly non-commercial (e.g., Debian) or involve

many different commercial entities working together (e.g., Linux). In both cases, social norms begin to influence the

direction of the project and the project's willingness to work with contributors and consumers to adjust to their needs.

These adjustments can pay dividends to downstream consumers in terms of future fitness and ease of adoption of the

OSS project to their purposes.

Curators have the same incentives to upstream any changes they make, since it simplifies adoption of future changes.

Upstreaming is simpler in practice for curators because they do it on a regular basis and typically have a long-term

relationship with the relevant OSS communities and understand the expectations.

Findings:

● The problem is not finding software bugs but fixing them. With modern tools identifying bugs is much easier than

fixing the bugs. With automation it is possible to identify hundreds of bugs, which when reported upstream may

overwhelm an OSS project and lead to bug fatigue.

● Governments are beginning to propose secure by design and OSS consumption norms and legislate some of

them (EU CRA).

● Staying up to date is important for critical online systems, as it enables the ability to accept and apply security

patches quickly.

● SBOM and SLSA are unique ways to address two difficult problems, but they need greater adoption,

development, and promotion to mature.

● There is a growing trend toward curated OSS software repositories being maintained by accountable providers.

Curators make it easier to stay up to date by applying critical patches on behalf of their consumers. (Discussed

more in Question 3)

● There is long term value to upstream changes, aside from improving the project for future consumers, the

upstreaming of changes reduces maintenance burden on the consumer.

● OSS project norms may involve legal, technical, and social complications that make upstreaming new

functionality difficult. In contrast, those issues generally do not apply for fixes.

● Upstreaming all changes to a project enables downstream consumers to approach the ability to auto-update

downstream dependencies.

● Staying up to date transparently fixes many outstanding issues over time but requires automated build/test in

practice.

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

● Not all OSS projects have good security hygiene and a vibrant community, and yet this rarely affects usage.

Consumers should use project health as an important criterion for choosing their dependencies. OSS

ecosystems can do more to clarify project health through projects like OpenSSF’s Scorecards.

The act of sharing bug fixes and software patches to help others is a core part of the OSS ethos. Incentives to improve

the up- and downstreaming of software, reduction of the friction for companies to contribute their fixes to OSS, and

greater collaboration around building and maintaining trustworthy software repositories will help make software less

vulnerable to known issues. Although these principles are well known, differing approaches to implementation creates

friction and inefficiency in the ecosystem.

Finally, there is an unmet need for ecosystem-specific guidance, which remains mindful of the diversity of OSS while

establishing consistent goals and capabilities. CISA has started work along these lines with its work on package

repository security [31]. More work in that area is promising, especially if it leads to better integrated tools and workflow.

Recommendation

CISA should produce a guidance document on Open Source Consumption and Upstreaming. This guide would be used

both as a technical guide for software engineers to understand the options around what to consider when selecting OSS

components to use in their projects, as well as justification to management for upstreaming important changes that will

benefit the source OSS project. The most important topics include:

● Control of the intake process for OSS;

● The value of staying up to date;

● The value of upstreaming at least fixes and often enhancements as well; and

● Stronger guidance on SBOM formats, and on how to use SBOMs and SLSA especially for composition of

packages into larger artifacts, and a definition of actionable and testable composition goals.

Question 2: How should CISA work to encourage these norms and contributions from federal agencies?

Discussion:

CISA has a number of ways to encourage OSS norms adoption, either within CISA and DHS or by promoting to other

federal agencies or partners. There are at least four ways in which CISA can encourage these norms:

Procurement: Most procured software includes OSS components in some form, and procurement guidelines

remain a strong mechanism to drive adoption.

Awareness: Promote OSS consumption best practices through visible indicators, such as including adoption of

best practices as part of existing assessments, and product rating labels.

Clearing house: Facilitate transparency and the exchange of information regarding OSS package security among

existing actors.

Centralized Curation: Focus much of the responsibility for consumption in one agency that then helps others with

safe consumption. “Others” can include agencies, SLTT governments, and even critical infrastructure suppliers.

This is a non-trivial job, but it is more efficient overall, and more likely to succeed, if centralized.

https://repos.openssf.org/principles-for-package-repository-security

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

Procurement

When acquiring software or services there is an opportunity to request that vendors clearly elaborate what norms they

follow, and what their roadmap is for enabling the principles of Secure by Design. This additional context will help

differentiate offerings vendors and allow CISA to financially support those that are best aligned with their goals.

Most of the focus to date has been on reducing the presence of major vulnerabilities, which is a critical goal. However,

there has been less focus on the reduction of future vulnerabilities, which should focus on the SSDF and in particular on

the vendor’s ability to stay up to date as vulnerabilities are discovered and fixed upstream. This ability should be a major

requirement for vendors.

There is also value in requiring vendors to disclose their intent to upstream changes or not, and specifically with which

projects. The use of SBOMs will already reveal the projects these vendors use. By revealing the intent to upstream, the

vendor indicates that at least those listed projects will be roughly up to date and should be at lower risk in terms of future

vulnerabilities.

Awareness: Existing Programs

Existing CISA programs that could help with awareness of OSS consumption best practices include:

• Cyber Infrastructure Survey. CISA could recommend a specific set of practices to include as part of the survey CIS.

• National Cyber Awareness System (NCAS). The NCAS “provides situational awareness to technical and non-technical

audiences by providing timely information about cybersecurity threats and issues and general security topics”, including

weekly vulnerability bulletins and best practices. Vendor OSS best practice adoption assessments and ratings could be

promoted through this system.

• Infrastructure Survey Tool (IST). The IST can be augmented to include adherence to OSS safe consumption norms.

Clearing House Activities

CISA already provides some clearinghouse capabilities [32][33] for distributing bulletins about threats, vulnerabilities,

threat actors, as well as visualization tools [34]. It also already has an assessment program for external dependencies

[35]. CISA could enhance its existing offerings to include a clearinghouse about OSS consumption. Some ideas include:

• A survey of OSS package usage by infrastructure. Who uses it, what version, and who is contributing back; how many

active users are impacted by it. It is not realistic to hit 100% coverage, but a good amount could come from just crawling

published dependency lists and commit logs.

• A clearinghouse of OSS package life cycles to answer questions such as whether it is actively maintained or is highly

forked. This could be an extension to CISA’s Cyber Threat Hunting (https://www.cisa.gov/resources-tools/services/cyber-

threat-hunting). The task would be to apply the result of the survey and look for OSS projects that are vulnerable to cyber

threat actors and create a clearinghouse for adoption.

https://www.cisa.gov/resources-tools/services/cyber-infrastructure-survey
https://www.cisa.gov/resources-tools/services/national-cyber-awareness-system
https://www.cisa.gov/resources-tools/services/infrastructure-survey-tool-ist

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

Centralized Curation

Centralized curation could form a basis for a more substantial effort that both simplifies safe consumption and improves

upstreaming of fixes and especially security patches. There are at least two variants of centralized curation in use by the

government today, Iron Bank and Code.gov.

The Department of Defense operates “Iron Bank” [36], which is part of the larger Platform One effort to support a secure

modern Kubernetes-based OSS platform. The Iron Bank is a collection of curated containers. These containers are kept

up to date, and the curation team assists vendors with the hardening of critical images. This is a great example of how

centralized curation allows the users of Platform One to be up to date and more secure with less effort. By working with

vendors, they also encourage upstreaming of changes.

The General Services Administration’s “code.gov” platform is a shared collection of OSS, but with less curation so far.

This is intended for OSS produced and maintained by the government, not external packages used by agencies. Thus,

this is mostly orthogonal to safe consumption, but it could be a good place for the government to lead by example and

learn lessons, as there are many OSS dependencies in use by these projects.

There is also a need for specialized curation for each critical infrastructure sector. Each sector has some unique software

dependencies that are unlikely to get attention from broader curation efforts. Sector Coordinating Councilsf at the

minimum should enumerate the critical OSS packages for their sector and push for some form of curation for those

packages.

Findings:

● Regulation to date focuses on limiting the presence of vulnerabilities (e.g. FedRAMP), but says little about the

development process, the SSDF or Secure by Design.

● Enhancing the existing awareness programs could help promote best practices in federal use of OSS.

● A Clearing house that enumerates the most popular or critical OSS by sector could help focus attention on the

software on which most depended.

● Understanding what works for “Iron Bank” would help improve CISA Secure by Design guidance documents.

● For OSS consumed by governments, it would be better to manage consumption centrally. It would allow smaller

agencies, SLTT governments, and even critical sectors, to consume OSS in a simpler and safer way.

● For critical sectors, Sector Coordinating Councils should play a role in defining, tracking and improving the OSS

that is critical to their sector. The focus should be on the OSS that is relatively specific to their sector.

Recommendations:

CISA should enhance existing awareness programs to promote OSS information sharing and norms, including the

creation and maintenance of a clearing house with up-to-date information about OSS consumption, working to enhance

the existing centralized curation services. Investigate if the biggest improvements would come from centralizing and

f “The Sector Coordinating Councils (SCCs) are self-organized and self-governed councils that enable critical infrastructure

owners and operators, their trade associations, and other industry representatives to interact on a wide range of sector-

specific strategies, policies, and activities.” [37]

https://p1.dso.mil/services/iron-bank
https://www.cisa.gov/resources-tools/groups/sector-coordinating-councils

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

sharing accountability for safe consumption and keeping dependencies up to date in one agency, perhaps in the style of

DoD’s Iron Bank, but intended for all agencies, SLTT governments, and critical sectors.

Question 3: How can CISA shift the burden of securing open source software to rest on those companies who routinely

build commercial products by offering modified versions of the open source project for a fee, often withholding

capabilities from the free version to incentivize consumers’ purchase of the enhanced version?

Discussion:

The process of securing software is an immensely complicated task at any meaningful scale, and instead of exploring

specific technologies or products to do so, this report explores the main characteristics of what a secure code base and

deployed project would look like. It consists of roughly three different functions: How the code is developed and deployed,

how that code is patched and securely maintained within a software lifecycle, and what the business model based on

one or more OSS projects is.

First is understanding if the software code in question is being developed securely. Indicators would include if a SDL is

implemented and working appropriately. Is the NIST SSDF being adhered to? The goal is to understand the provenance of

the source code, how secure it is.

Once source code is compiled or interpreted and is ready for production, the next step is understanding how secure the

default deployment configuration is. Are safe defaults selected, are modern exploit mitigations and compiler options

used, is the code written in a memory safe language, etc.

The software is ultimately loaded on a computer hardware architecture to execute on, whose characteristics help

determine how secure the final software/hardware combination is. The solution as delivered should be configured by

default to fully utilize hardware and OS-provided security mechanisms that are available. For example, CPU-based

memory protection technologies, Hardware Security Modules (HSM) to hold secret encryption keys, and virtualization-

based system protections would be common here. How is the software securely deployed? Are critical bits of code

running in secure enclaves? Are processes least privileged and sandboxed? What techniques are being used to enforce

security boundaries?

Understanding the threat models around how the upstream project development process is secured from attacks against

its supply chain, or from unauthorized code check ins should a developer’s workstation be compromised would be

important. Related to this would be protections against insider threats such as adversarial employees or rogue

developers. Answering these kinds of questions helps the consumer better assess risks, with SLSA levels an example of

an indicator.

The second characteristic to understand is around the maintenance life cycle of the deployed software. Does the project

that the deployed software depends on have the necessary interest and resources to hunt for vulnerabilities in their code

and computing infrastructure, or to respond to bugs reported in their software? Essentially how mature and sustainable

is the OSS project?

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

Burden Shifting and Curators

In exploring methods of shifting the burden of securing open source software to rest on those companies who routinely

build commercial products, it is important to separate the accountability for delivery of secure software from the ongoing

maintenance of the underlying OSS project.

Broadly speaking, the burden of accountability, legal liability, is often imposed in an attempt to regulate safety through

the efficient allocation of resources. If a toaster explodes in normal operation, the consumer will suffer harm. In the case

of a toaster, liability is used to incentivize the manufacturer to allocate resources to toaster safety, internalizing the costs.

However, if the consumer has been using the toaster in a particularly dangerous way, the consumer may bear some

responsibility, and therefore must bear some of the costs. When determining who should bear the costs, liability theory

looks to causation, as well as who is best positioned to mitigate the danger.

In general, people are liable for an injury caused by their breaching a duty of care. Without a duty of care, there is no

liability. Thus, through imposing a duty of care, or voiding contract terms that disclaim one, the law can shift the costs of

an injury, reallocating to a party better able to avoid or mitigate the risk, often because that party has more resources

and better information and ability to address the issue.

In the case of OSS, there are huge differences in the resources, information, and ability across projects. For some

community maintained projects, which are vital to our connected society, the developers are volunteers, contributing

code because they use the software, and saw a need. These maintainers and contributors are poorly positioned to bear

the potential costs of a software bug, even if they know the codebase well and are adept at its development.

As discussed in the introduction, OSS projects almost always include a license term providing that the software is “as is,”

and thus the consuming company takes on all responsibility and liability for any security issues in that code.

Unfortunately, the consumer may not be best positioned to mitigate these risks either, leading to the need for an

accountable intermediary or curator.

When a consumer becomes aware of a security issue, they have essentially three choices to fix the issue:

1. Direct fix: If they have the skill they can fix the problem in their copy of the OSS software immediately, and then

try to submit the changes upstream. This is a great approach, but it requires technical capability and

management willingness in the consumer.

2. Community fix: They can work with the community for a fix. This is a great model if there is an active community

around the project, but consumers regularly use projects with limited support in practice. Thus, the choice of

which projects to consume, based on their ability to address security issues, is a critical part of any long-term

solution.

3. Curator fix: A third party curator typically hired by the consumer, can either do the direct fix (and has the

capability to do so), or work with the community for a joint fix. This is essentially the option to outsource to a

more sophisticated entity to try and get the fixes developed and committed.

When companies offer support contracts that cover security issues in OSS, they are acting in the paid curator role for that

software. Although such security fixes are typically also moved upstream in these cases, the upstream version tends to

have the fix only in the latest version. In contrast, the curator typically also fixes the supported version, which is often

significantly older. Fixes to old versions is one of the main values of such a support contract, exactly because it is often

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

difficult and specialized work. We should not expect such work to be free, even if the overall software is free.

Unfortunately, most of the OSS in use do not have a support option today.

The OSS project is always responsible for the long-term evolution of their code, but they are not liable for flaws in any

particular version. Thus, there is usually some integration work to do to accept a “direct fix” patch into the project. This

negotiation of the right patch for upstream is an important part of the process — the project has more considerations

than this single consumer when creating the right fix. The proposed patch is a great start and has significant value, but

the final version of the patch comes from the community.

Curators Can Undertake the Accountability Burden

Although more sophisticated consumers can take accountability themselves, most lack the resources and skills to do it

across all the software they consume, leaving a gap between “as is” OSS and the liability they take on by producing

software. This gap leads to the need for an “accountable intermediary”.

Curators can help solve this key challenge by getting paid to take on accountability and ideally legal liability as a business

model. When done well the curator has sufficient resources and the ability to gain information on security flaws and

implement fixes, and thus, can provide the necessary assurances. Although some big companies and the DoD do this

internally, this kind of support is needed broadly, especially for smaller companies, local governments and less technical

consumers of OSS.

There are at least two levels of support a producer of OSS-based packages could provide:

● Best effort: Packages are freely available but come with no promises of fitness or expectations for timely security

fixes. Package managers mostly fit here.

● Curated packages: Collections of packages that have been tested and are kept up to date, possibly including

older versions with up-to-date security patching. These typically come through a paid support contract. Paid Linux

distributions tend to fit this model, such as the Linux distributor Red Hat that fixes security issues in packages as

part of their support model.

Most consumers with security requirements should consider using curation rather than taking on accountability directly.

Currently this is a nascent and evolving area, so the use of curators is not yet available universally, but there are some

examples:

● Some OS distributions as described above, including versions of Linux and BSD. However, these typically only

cover lower-level packages.

● The FreeBSD Foundation recently announced a service to aid commercial users with the NIST Secure Software

Development Framework [38].

● Tidelift partners with open source maintainers and pays them to implement secure software development

practices and validate the practices they follow.

● Google provides secure versions of 2500+ Java and Python packages, through a (paid) offering called “Assured

OSS” [39]. These packages are kept up to date and security issues are addressed as they arise.

● The Nix Packages collection [40] includes automated and tested builds of over 100,000 open-source

packages,[41] in addition to the NixOS Linux distribution based on them, and these packages may be used on

other Linux and macOS-based systems.

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

The US government’s primary lever to improve security has been to create accountability through regulation, such as

FedRAMP or through procurement rules that generally place liability on the vendor. Encouraging the use of curation as a

way to meet liability obligations would improve security in practice by shifting this burden to specialists. Specialists can

help keep packages up to date, or apply security fixes to older versions, and they are more likely to drive automated build

and testing capabilities. The existence of more curation options would benefit smaller companies as SLTT governments

as well.

CISA can also help define the expectations for curators, including the adoption of various best practices, including use of

SBOMs, SLSA, supply-chain security, and notification of newly discovered vulnerabilities.

Finally, curators can also help with certification. There are already vendors that produce FIPS-certified libraries, which

greatly reduces the burden of proving FIPS compliance for their customers. This can be generalized to any kind of

certification. There is significant, specialized and ongoing work for software certification, which makes it ideal for

outsourcing to a curator, where that work can benefit many consumers.

Standardized Automation Templates

It is possible to help reduce the friction for OSS maintainers to participate in security evaluations by encouraging the

creation and deployment of standardized continuous integration (CI) automation templates. Today, the processes for

building and testing packages are typically written down in English, and thus require manual interpretation. For example,

to build software you may need to set up a virtual machine with various tools in order to run scripts that actually do the

build.

Templates for automation enable automated builds by third parties that are not already familiar with the package. This

has several advantages:

● It encourages use of a trusted build system that meets SLSA guidelines and can sign the produced artifacts.

● It enables third parties to cover the costs of builds (and testing), rather than expecting maintainers to cover

those costs.

● It forms an excellent way to enforce best practices and thus improve many aspects of security, including SBOM

generation and SLSA compliances (by building those into the automation in a uniform way).

● It helps with incident response by simplifying the work of responders to rebuild related parts of the dependency

chain as needed.

● It allows larger, better-staffed projects to assist smaller projects by sharing more of the CI pipeline and reporting

process.

● This process can also lead to “reproducible builds” in which multiple parties can independently verify a given

build by building it themselves.

An example project in this direction is “OSS Rebuild” [42], which uses standardized build descriptions to enable others to

build those packages. In many cases, the description can be generated automatically, but if not, maintainers or others

can write the description by hand, thus encoding their process in a form that enables automation.

The same approach should be used for automated testing, including unit tests, integration testing and fuzz testing (when

used). As with builds, there can be significant operational costs to testing, which in practice disincentivizes adding more

tests or running them frequently. But the most secure software should have many tests that ideally are run on every

change. Automation templates can decouple the process of testing from how these costs are covered.

https://github.com/google/oss-rebuild

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

This can also address an important related problem, which is that during incident response, it is difficult to know if a

proposed change will break functionality or not, as there are not enough test cases for many OSS packages in practice to

make that determination. This is a sticking point for machine learning-driven automated patching as well: how do we

know if a patch will work in practice or not?

Sorting out automation for builds and testing should also lead to more test cases over time, because of the way it

enables consumers or curators to pay these costs. Automated generation of test cases is an active area of research that

also merits more investment.

Templates should:

● Be standardized for key languages and build systems

● Originate from a single source point with a clear versioning information

● Have a mechanism to stay up to date as process goals evolve.

● Generate the metadata needed to address software supply-chain risks, including SBOM information and SLSA

metadata.

● Facilitate the delegation of computationally intensive tasks, such as fuzzers or large test suites, to larger, better

resourced organizations.

Delegated tasks can submit results to an aggregating entity on behalf of smaller projects with no loss of security, as the

commit state is identical.g Delegation allows smaller projects to participate in SBOM generation with minimal burden on

the maintainers (e.g. simply accepting a pull request for an automation file), while allowing better-staffed and resourced

organizations to run batteries of expensive analyses on the repository at their discretion. This helps shift the burden of

compliance to large, commercial organizations or curators that rely on small OSS projects for critical components.

Findings:

● OSS projects are responsible, but not liable, for their software whereas commercial software vendors

are both responsible and liable for their software, subject to software license limitations.

● Small OSS projects lack the resources to keep up with evolving security norms.

● Many organizations would be well-served by having a commercial relationship with a curator that

enables internal staff to self-serve and choose OSS projects among the curator’s supported collection.

● Conversely, the accountability burden cannot be placed on OSS projects directly, as the consumer

agrees not to do so just by using the software — the “as is” license makes this very clear.

● It is encouraging to see some OSS projects voluntarily agreed to provide more accountability in some

areas.

● Promoting curation as a way to meet security obligations, particularly for critical systems, would improve

security broadly for smaller or less technical organizations.

● Curation is also an easier path to certified software, including FIPS compliance for example.

● Standardized automation templates can drive better conformance to best practices and enable broader

use of SBOMs and SLSA, especially for small critical projects. Such automation can also shift the cost

burden from projects to better-funded consumers or curators.

g Ideally, this would be through reproducible processes so that others can verify the work. When that is not possible,

signed output is the next best option, and then the consumer can decide if they trust the signing entity. For example, in

Google’s Assured OSS system, Google signs the produced artifacts.

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

● Organizations could provide automation that continuously evaluates and provides a status badge to OSS

projects attesting to various aspects of security quality

● Security by scanning for vulnerabilities after they are built is not security by design.

● CISA could embrace and extend the Cyber Trust Mark (CTM) program to better expose to consumers

what OSS norms are being followed from a high level perspective.

● CISA could encourage federal departments or agencies to consider CTM scores when procuring

software.

● CISA should encourage curators of open-source software to adhere to the Supply-chain Levels for

Software Artifacts framework for pre-built software artifacts that they provide

Recommendations:

CISA should endorse the curation model for open source and encourage its use by federal agencies and their vendors as

a way to meet liability obligations and improve security in practice by shifting this burden to specialists. CISA should also

encourage the use of standardized templates to automate and harmonize builds, tests and reporting, and to enable third

parties to cover these costs, further shifting the burden to better-funded organizations.

Question 4: Are there additional recommendations for CISA to (a) support secure by design outcomes in AI systems that

are distributed under open source compatible terms, or (b) protect both the public and private sector from potential

harms from misuse of foundation AI models with widely available model weights?

Discussion:

As Wikipedia explains succinctly, “A foundation model, also known as a large AI model, is a machine learning[43] or

deep learning model[44] that is trained on broad data such that it can be applied across a wide range of use cases[45].

Foundation models have transformed artificial intelligence (AI)[46], powering prominent generative AI[47] applications

like ChatGPT[48]. The Stanford Institute for Human-Centered Artificial Intelligence's (HAI) Center for Research on

Foundation Models (CRFM) created and popularized the term.”

Foundation models are general-purpose technologies [49] that can support a diverse range of use cases. Building

foundation models is often highly resource-intensive, with the most expensive models costing hundreds of millions of

dollars to pay for the underlying data and compute required. In contrast, adapting an existing foundation model for a

specific use case or using it directly is much less expensive.

Early examples of foundation models are large language models (LLMs)[50] like OpenAI's "GPT-n" series[51] and Google's

BERT[52]. Beyond text, foundation models have been developed across a range of modalities—including DALL-E[53] and

Flamingo for images, MusicGen for music, and RT-2 for robotic control. Foundation models constitute a broad shift in AI

development: foundation models are being built for astronomy, radiology, genomics, music, coding, times-series

forecasting [54], and mathematics.”

Models require large quantities of data to be trained on, and for the training data to be useful it must be tagged with

attributes that describe it. In the case of a picture, elements that make up the composition of the picture would be

included. A picture of a car could include data such as the make, model, year, color, if the car is fast, how many people it

can seat, etc. As data tagging sets grow in size and accuracy it becomes possible to use them to pre-tag new data before

being sent to enormous numbers or people, often in other countries, for manual review.

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Generative_artificial_intelligence
https://en.wikipedia.org/wiki/ChatGPT
https://en.wikipedia.org/wiki/General-purpose_technology
https://en.wikipedia.org/wiki/Language_models
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/DALL-E
https://en.wikipedia.org/w/index.php?title=MusicGen&action=edit&redlink=1

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

Government Special Considerations

Government entities that wish to use AI models have some special considerations - if the model will be used for the

provision of government services, it must be sure that the model provides a fair and even handed application, without

bias from the weights or data sets. For example, the U.S. Commission on Civil Rights recently released a report on the

civil rights implications of the Federal Use of facial recognition technology, noting the “significant risks to civil rights,

especially for marginalized groups who have historically borne the brunt of discriminatory practices.” [55] Likewise, the

government should consider risks to civil rights and liberties before implementing AI in government services.

Moreover, government entities will want to ensure that the data set’s origin respects legal norms and human rights. For

example, “After releasing ChatGPT in 2022, OpenAI was widely criticized for outsourcing the data labeling work that

helped make the chatbot less toxic to Kenyans earning less than $2 hourly.”[56]

As this report is being finalized, reports of OpenAI threatening to remove access to their latest “o1” model, should

researchers attempt to understand how the model reasons, is the antithesis of transparent AI and should be of concern

to governments [57].

Consumer rights initiatives such as the Right to Repair [58] have made compelling arguments and legislative progress

toward enshrining a consumer’s right to know what is going on inside their computers. These arguments should be

extended to include the transparency, auditability and reproducibility of AIs.

Enhancing Transparency, Auditability and Reproducibility

Having an open, robust and verifiable record of where AI data comes from, what model weights were used, and

assurance that it has not been tampered with can help auditability and trust. The provenance of data used for AI models

is key to reproducibility, ensuring that we know that a given data set is in fact the data set used for a foundation model,

and has not been subject to modification or even malicious poisoning. This is especially important for OSS AI models

available for wide adoption.

The data used to train the LLM can be proprietary or publicly available, or a combination of both, and there is a growing

collection of common reference data sets that are used for training. Understanding both the data source and the model

weights is necessary. While many different implementations may start with the same training data the weights that are

applied might be quite different.

Given that much of the training data is publicly accessible, the weights that different companies or projects apply to it are

frequently considered proprietary and provide their differentiation and competitive advantage. In some cases, access to

the proprietary information may be restricted, by way of interpreting the Digital Millennium Copyright Act’s (DMCA)

prohibitions on circumventing copyright to apply to independent AI research into models.

However, the DMCA has safe harbor provisions which allow the Librarian of Congress to grant exemptions in a triennial

rulemaking process. The exemptions currently include security research of technologies deemed critical, such as election

technology or medical devices, which may not be broad enough. As the Department of Justice has recommended, “the

Copyright Office [should] consider clarifying the existing exemption to ensure its application to good-faith security

research regarding AI systems and other, similar, algorithmic models.” [59] Extending these protections to AI research

would allow the research needed help to inform both policy makers and technical coordinators.

https://time.com/6247678/openai-chatgpt-kenya-workers/

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

Summary Information Cards Can Help Provide Needed Transparency

Summary information about models and weights can also enhance transparency. For example, Google helped create two

types of summary information cards, Data Cards and Model Cards, which provide information to help describe the data

sets and the model.

Google’s “Data Cards” are a way to describe the data used in the training of an LLM. Google describes them as

“structured summaries of essential facts about various aspects of ML datasets needed by stakeholders across a

project's lifecycle for responsible AI development.” Google has created a Data Card template that “captures 15 themes

that we frequently look for when making decisions - many of which are not traditionally captured in technical dataset

documentation.” [60]

“Model Cards,” created by Google in 2018 to help with AI transparency, are also a critical part of building responsible

systems. [61] They help “to organize essential facts of machine learning models in a structured way.” “Model cards take

many different forms depending on the use case. Given the rapid evolution of AI technologies and as new, industry-wide

benchmarks for performance and safety emerge, model card structures and content must be flexible. They’re not one-

size-fits all.”

These types of cards, which we call transparency cards as a category, provide useful metadata about a model, and

should be encouraged. However, they could be enhanced with more information on the origins or providence of the data,

like what the coffee industry does with “fair trade” beans as a way to signal to purchasers that their product was ethically

sourced.

In addition, transparency cards do not currently allow for reproducibility or a way to verify that a given model has actually

used the datasets and models described in the cards. In software, “[r]eproducible builds, also known as deterministic

compilation, is a process of compiling software which ensures the resulting binary code can be reproduced. … For the

compilation process to be deterministic, the input to the compiler must be the same…” [62] This same concept can be

applied to the AI model ecosystem.

To develop reproducibility for AI models, however, the key is not the source code. Instead, this would require keeping a

copy of the data set(s) and the weights in a manner that can be verified as the basis of the model. For example, create

and publish a hash of the data set after model creation, such that the data set used for inputs can be later verified by

matching the hash.

While models may be different each time the weights are applied, by ensuring the provenance of the exact same data

set, one can reduce the risk of security harms like data poisoning.

Findings:

● The use of transparency cards, like these model and data cards, should be embraced and expanded to provide

better transparency.

● Openness in the provenance and design of AI models, allowing consumers, whether the government,

corporations or citizens, to better understand the trustworthiness of the model’s results.

https://modelcards.withgoogle.com/about

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

● More information on models, their data set and their weights, can allow for third party audits and security

research on the models.

● CISA could support the Librarian of Congress granting an exemption from the DMCA to independent researchers

accessing an AI’s training data and models.

● The government could promote openness by considering the level of transparency and openness when selecting

models to use.

● Because of the government's unique position and perspectives in the AI ecosystem, it should consider

participation in appropriate working groups.

● Additional data should be collected and published to better replicate and verify a model after the fact.

○ This would require keeping a copy of the data set(s) and the weights in a manner that can be verified as

the basis of the model. For example, publish a hash of the data set after model creation, such that the

data set used can be later verified by matching the hash.

○ The goal of this effort is the AI equivalent of software dependencies. By ensuring transparency in the

provenance of all data used to train a model in the event of a poisoned and manipulated data source,

impacted models become discoverable.

Recommendations:

CISA emphasizes the importance of “reproducible” builds and should extend that notion to encourage open source AI

models to enhance transparency, auditability and reproducibility including providing information on the model, the data,

as well as the underlying data set. These transparency cards, such as the model and data cards discussed above, should

also include information on the provenance of the data and the model, sufficient for government consumers to

understand any ethical implications, and CISA should support the Librarian of Congress to grant exemptions from the

DMCA to researchers seeking to access the underlying information.

Conclusion:

We believe the long-term solution for safe consumption requires a structural change in the mechanisms around the

consumption of open-source software. This is driven by the fundamental disconnect between the “as is” disclaimer used

in open source, which is necessary for the developers, and the desire for top-down accountability.

This gap can be bridged by curation, where an accountable intermediary takes responsibility for a subset of OSS

packages. Although the curation model has existed for many years in various forms, it is not widely used above the level

of OS distributions, which only cover a fraction of the important OSS in use today.

The other findings are also critically important and will provide needed transparency and automation tools that will help

CISA promote safe OSS consumption. When combined with the curation model, these will help provide the structural

changes necessary for developers and other OSS consumers to manage and mitigate their risks.

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

Appendix A

TASKING

Technical Advisory Council: The federal government, critical infrastructure, and the broader public are highly dependent

on open source software (OSS). As illustrated by the Log4shell vulnerability, vulnerabilities in widely used open source

software can have widespread downstream effects. CISA recognizes the immense value that open source software has

provided and wants to ensure that the OSS we depend on is secure. CISA is concerned about both vulnerabilities present

in widely used OSS libraries and supply chain attacks targeting open source software producers and distribution

channels, and seeks to foster the adoption of more secure development practices within open source software.

• Where We Are. In line with the National Cybersecurity Strategy, CISA is working to help secure the federal government’s

usage of OSS, as well as helping strengthen the security of the broader OSS ecosystem. CISA has engaged heavily with

the open source community to date, including hosting a roundtable discussion with OSS community leaders, participating

in the Open Source Software Security Foundation (OpenSSF)’s conference in Vancouver and summit in DC, and issuing a

RFI with the White House, National Science Foundation (NSF), and the Defense Advanced Research Projects Agency

(DARPA) on OSS security.

• New Initiatives. CISA’s Open Source Software Security Roadmap lays out CISA’s planned actions around OSS security.

This includes engaging with package managers and code repositories to establish shared principles around actions to

increase security, such as requiring multi-factor authentication for maintainers of critical projects. CISA is also

undertaking steps to understand which OSS packages are most prevalent among the federal government and critical

infrastructure. Furthermore, we are building out relationships with OSS communities, including by establishing a channel

for communication.

• Where We Want to Go in 2024. CISA wants to ensure that we can depend on the security of critical open source

packages. This includes the federal government and private companies acting as good stewards of the OSS they depend

on, with financial and code contributions.

Questions for the Committee: We are eager to further explore how CISA, in line with our Secure by Design goals, can

encourage companies to be better stewards of the open source software they depend on and produce. To that end, we

present the following two guiding questions.

June report: OSS consumption norms

Guiding question: How should CISA encourage the adoption of safe consumption norms for open source software, while

also encouraging companies to contribute fixes and enhancements back to the open source projects?

Additionally, how should CISA work to encourage these norms and contributions from federal agencies?

September report: Disparities in commercial OSS security

Guiding question: How can CISA shift the burden of securing open source software to rest on those companies who

routinely build commercial products by offering modified versions of the open source project for a fee, often withholding

capabilities from the free version to incentivize consumers’ purchase of the enhanced version?

Additional Context: some open source projects, which are developed by employees of corporations that sell related

products, lack fundamental security-related capabilities that are present in related commercial products. This technique

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

– to give away, under an open source license, a limited form of a project while charging for a more secure version -- is

commonly referred to as “commercial open source software” today. However, many small and medium enterprises, as

well as OT/ICS service providers, never purchase the “enhanced” versions, opting to keep costs low by continuing to rely

on open source software from free and public sources.

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

Appendix B Referenced in Document

1. https://www.cisa.gov/securebydesign

2. https://w3techs.com/technologies/details/ws-nginx

3. https://www.hbs.edu/faculty/Pages/item.aspx?num=65230

4. https://www.sonatype.com/hubfs/1-2023%20New%20Site%20Assets/SSCR/8th-Annual-SSCR-

digital-0206%20update.pdf

5. https://www.whitehouse.gov/oncd/briefing-room/2024/01/30/fact-sheet-biden-harris-

administration-releases-end-of-year-report-on-open-source-software-security-initiative

6. https://www.dhs.gov/dhs-digital-strategy

7. [https://www.cisa.gov/opensource

8. https://www.cisa.gov/resources-tools/groups/cyber-safety-review-board-csrb

9. https://en.wikipedia.org/wiki/Free_and_open-source_software

10. https://opensource.org/license

11. https://media.defense.gov/2023/Dec/11/2003355557/-1/-

1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%

20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MAT

ERIALS.PDF

12. https://www.microsoft.com/en-us/securityengineering/opensource

13. C3 Principles for Package Repository Security | wg-securing-software-repos (openssf.org)

14. https://dl.acm.org/doi/10.1145/3347446

15. https://newsroom.eclipse.org/news/announcements/open-letter-european-commission-cyber-

resilience-act

16. https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses

17. https://en.wikipedia.org/wiki/Open-design_movement

18. https://en.wikipedia.org/wiki/Open-source#Society

19. https://en.wikipedia.org/wiki/Maker_culture

20. C5 https://opensource.org/blog/what-is-the-cyber-resilience-act-and-why-its-important-for-open-source

21. https://csrc.nist.gov/Projects/ssdf

22. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

23. https://deps.dev

24. https://slsa.dev/

25. https://slsa.dev/blog/2022/05/slsa-sbom

26. https://en.wikipedia.org/wiki/Downstream_(software_development)

27. https://en.wikipedia.org/wiki/Upstream_(software_development

28. https://shields.io/

29. https://github.com/u-root/u-root?tab=readme-ov-file#u-root

30. https://github.com/ossf/scorecard

31. https://repos.openssf.org/principles-for-package-repository-security

32. https://www.cisa.gov/resources-tools/services/automated-indicator-sharing-ais-service

33. https://www.cisa.gov/resources-tools/services/cyber-threat-information-sharing-ctis-shared-

cybersecurity-services-scs

34. https://www.cisa.gov/resources-tools/services/infrastructure-visualization-platform-ivp

35. https://www.cisa.gov/resources-tools/services/external-dependencies-management-assessment

https://www.cisa.gov/securebydesign
https://w3techs.com/technologies/details/ws-nginx
https://www.hbs.edu/faculty/Pages/item.aspx?num=65230
https://www.sonatype.com/hubfs/1-2023%20New%20Site%20Assets/SSCR/8th-Annual-SSCR-digital-0206%20update.pdf
https://www.sonatype.com/hubfs/1-2023%20New%20Site%20Assets/SSCR/8th-Annual-SSCR-digital-0206%20update.pdf
https://www.whitehouse.gov/oncd/briefing-room/2024/01/30/fact-sheet-biden-harris-administration-releases-end-of-year-report-on-open-source-software-security-initiative
https://www.whitehouse.gov/oncd/briefing-room/2024/01/30/fact-sheet-biden-harris-administration-releases-end-of-year-report-on-open-source-software-security-initiative
https://www.dhs.gov/dhs-digital-strategy
https://www.cisa.gov/opensource
https://www.cisa.gov/resources-tools/groups/cyber-safety-review-board-csrb
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://opensource.org/license
https://media.defense.gov/2023/Dec/11/2003355557/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.PDF
https://media.defense.gov/2023/Dec/11/2003355557/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.PDF
https://media.defense.gov/2023/Dec/11/2003355557/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.PDF
https://media.defense.gov/2023/Dec/11/2003355557/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.PDF
https://www.microsoft.com/en-us/securityengineering/opensource
https://repos.openssf.org/principles-for-package-repository-security.html#:~:text=The%20Securing%20Software%20Repositories%20Working%20Group%20(WG)%20of%20the
https://dl.acm.org/doi/10.1145/3347446
https://newsroom.eclipse.org/news/announcements/open-letter-european-commission-cyber-resilience-act
https://newsroom.eclipse.org/news/announcements/open-letter-european-commission-cyber-resilience-act
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
https://en.wikipedia.org/wiki/Open-design_movement
https://en.wikipedia.org/wiki/Open-source#Society
https://en.wikipedia.org/wiki/Maker_culture
https://opensource.org/blog/what-is-the-cyber-resilience-act-and-why-its-important-for-open-source
https://csrc.nist.gov/Projects/ssdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://deps.dev/
https://slsa.dev/
https://slsa.dev/blog/2022/05/slsa-sbom
https://en.wikipedia.org/wiki/Downstream_(software_development)
https://en.wikipedia.org/wiki/Upstream_(software_development)
https://shields.io/
https://github.com/u-root/u-root?tab=readme-ov-file#u-root
https://github.com/ossf/scorecard
https://repos.openssf.org/principles-for-package-repository-security
https://www.cisa.gov/resources-tools/services/automated-indicator-sharing-ais-service
https://www.cisa.gov/resources-tools/services/cyber-threat-information-sharing-ctis-shared-cybersecurity-services-scs
https://www.cisa.gov/resources-tools/services/cyber-threat-information-sharing-ctis-shared-cybersecurity-services-scs
https://www.cisa.gov/resources-tools/services/infrastructure-visualization-platform-ivp
https://www.cisa.gov/resources-tools/services/external-dependencies-management-assessment

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

36. Platform One | Services | Iron Bank (dso.mil)

37. https://www.cisa.gov/resources-tools/groups/sector-coordinating-councils

38. https://freebsdfoundation.org/news-and-events/latest-news/freebsd-foundation-announces-ssdf-

attestation/

39. https://cloud.google.com/security/products/assured-open-source-software

40. https://github.com/NixOS/nixpkgs

41. https://repology.org/repository/nix_unstable

42. https://github.com/google/oss-rebuild

43. https://en.wikipedia.org/wiki/Machine_learning

44. https://en.wikipedia.org/wiki/Deep_learning

45. https://en.wikipedia.org/wiki/Foundation_model

46. https://en.wikipedia.org/wiki/Artificial_intelligence

47. https://en.wikipedia.org/wiki/Generative_artificial_intelligence

48. https://en.wikipedia.org/wiki/ChatGPT

49. https://en.wikipedia.org/wiki/General-purpose_technology

50. https://en.wikipedia.org/wiki/Language_models

51. https://en.wikipedia.org/wiki/OpenAI

52. https://en.wikipedia.org/wiki/BERT_(language_model)

53. https://en.wikipedia.org/wiki/DALL-E

54. https://en.wikipedia.org/wiki/Time_series

55. https://www.usccr.gov/news/2024/us-commission-civil-rights-releases-report-civil-rights-implications-

federal-use-facial

56. https://time.com/6247678/openai-chatgpt-kenya-workers/

57. https://www.wired.com/story/openai-threatens-bans-as-users-probe-o1-model/

58. https://www.ifixit.com/Right-to-Repair

59. https://www.copyright.gov/1201/2024/USCO-

letters/Letter%20from%20Department%20of%20Justice%20Criminal%20Division.pdf

60. https://sites.research.google/datacardsplaybook

61. https://modelcards.withgoogle.com/about

62. https://en.wikipedia.org/wiki/Reproducible_builds

https://p1.dso.mil/services/iron-bank
https://www.cisa.gov/resources-tools/groups/sector-coordinating-councils
https://freebsdfoundation.org/news-and-events/latest-news/freebsd-foundation-announces-ssdf-attestation/
https://freebsdfoundation.org/news-and-events/latest-news/freebsd-foundation-announces-ssdf-attestation/
https://cloud.google.com/security/products/assured-open-source-software
https://github.com/NixOS/nixpkgs
https://repology.org/repository/nix_unstable
https://github.com/google/oss-rebuild
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Foundation_model
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Generative_artificial_intelligence
https://en.wikipedia.org/wiki/ChatGPT
https://en.wikipedia.org/wiki/General-purpose_technology
https://en.wikipedia.org/wiki/Language_models
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/DALL-E
https://en.wikipedia.org/wiki/Time_series
https://www.usccr.gov/news/2024/us-commission-civil-rights-releases-report-civil-rights-implications-federal-use-facial
https://www.usccr.gov/news/2024/us-commission-civil-rights-releases-report-civil-rights-implications-federal-use-facial
https://time.com/6247678/openai-chatgpt-kenya-workers/
https://www.wired.com/story/openai-threatens-bans-as-users-probe-o1-model/
https://www.ifixit.com/Right-to-Repair
https://www.copyright.gov/1201/2024/USCO-letters/Letter%20from%20Department%20of%20Justice%20Criminal%20Division.pdf
https://www.copyright.gov/1201/2024/USCO-letters/Letter%20from%20Department%20of%20Justice%20Criminal%20Division.pdf
https://sites.research.google/datacardsplaybook
https://modelcards.withgoogle.com/about
https://en.wikipedia.org/wiki/Reproducible_builds

ES-1. CISA Cybersecurity Advisory Committee (CSAC)

Appendix C

The following TAC subcommittee members contributed towards this report:

• Mr. Jeff Moss, Chair

• Mr. Eric Brewer

• Mr. Dino Dai Zovi

• Mr. Luiz Eduardo

• Mr. Royal Hansen

• Mr. Andrew Huang

• Mr. Karl LeBoeuf

• Ms. Maria Markstedter

• Mr. Kurt Opsahl

• Ms. Runa Sandvik

• Mr. Yan Shoshitaishvili

• Mr. Kevin Tierney

• Ms. Rachel Tobac

• Mr. Shawn Webb

• Mr. David Weston

• Mr. Bill Woodcock

	Structure Bookmarks
	REPORT TO THE CISA DIRECTOR

