
Framing Software Component
Transparency: Establishing a Common
Software Bill of Materials (SBOM)
Third Edition

Tooling and Implementation Working Group hosted by the Cybersecurity and Infrastructure
Security Agency (CISA)

September 3, 2024

Photo by Luke van Zyl on Unsplash

https://unsplash.com/s/photos/structure

Third Edition 2

Table of Contents
Table of Contents 2
About This Document 4
1 Problem Statement 5

1.1 Goals 5
2 What is an SBOM? 7

2.1 SBOM Elements 8
2.2 Baseline Attributes 9

2.2.1 SBOM Meta-Information 9
2.2.1.1 Author Name 9
2.2.1.2 Timestamp 10
2.2.1.3 Type 10
2.2.1.4 Primary Component (or Root of Dependencies) 10

2.2.2 Component Attributes 10
2.2.2.1 Component Name 11
2.2.2.2 Version 12
2.2.2.3 Supplier Name 12
2.2.2.4 Unique Identifier 13
2.2.2.5 Cryptographic Hash 14
2.2.2.6 Relationship 15

2.2.2.6.1 Primary Relationship 16
2.2.2.6.2 “Included In” Relationship 16
2.2.2.6.3 Heritage or Pedigree Relationship 16
2.2.2.6.4 Relationship Completeness 16

2.2.2.7 License 17
2.2.2.8 Copyright Notice 18

2.3 Undeclared SBOM Data 18
2.3.1 Unknown Component Attributes 19
2.3.2 Redacted Components 20
2.3.3 Unknown Dependencies 20

2.4 Supplemental Information to Support Use Cases 21
2.5 Mapping to Existing Formats 22
2.6 SBOM Examples 23

3 SBOM Processes 26
3.1 SBOM Creation: How 26
3.2 SBOM Creation: When 27
3.3 SBOM Exchange 27
3.4 Software Supply Chain Rules 28
3.5 Roles and Perspectives 30

Third Edition 3

3.5.1 Perspectives 30
3.5.1.1 Produce 30
3.5.1.2 Choose 30
3.5.1.3 Operate 30

3.6 SBOM Use Cases 31
3.6.1 Vulnerability Management and Vulnerability Exploitability eXchange (VEX) 31
3.6.2 Intellectual Property (IP) 32
3.6.3 Secure Supply Chain Software Assurance 32

3.7 Tool Support 32
4 Conclusion 33
Appendix A Edition Changes 34
Appendix B Terminology 35
Appendix C Third Edition Acknowledgements 39

Third Edition 4

About This Document
The first edition of this document1 was published in 2019 as part of the Phase I series of reports
from the National Telecommunications and Information Administration (NTIA) Software
Component Transparency multistakeholder process.2 The concept and implementation of the
Software Bill of Materials (SBOM), introduced in that edition, served as the foundation for
subsequent work that further matured SBOM.

The second edition3 updates published in 2021 focused on specific topics rather than a
comprehensive revision of the entire document. The updates were based on insights from the
Framing group, a workstream under the NTIA multistakeholder process, as well as feedback
from other groups within the NTIA Software Component Transparency Multistakeholder Process
and the broader SBOM community.

This document, the third edition, further defines and clarifies SBOM Attributes from the 2021
“Framing Software Component Transparency” document, offering descriptions of the minimum
expected, recommended practices, and aspirational goal for each Attribute. The work reflected
in this document is a product of extensive discussion in the SBOM Tooling and Implementation
Working Group, a Cybersecurity and Infrastructure Security Agency (CISA) community-driven
workstream, and feedback from across the software community.

This document, “Framing Software Component Transparency,” is distinct from the “Minimum
Elements for a Software Bill of Materials,”4 also published by the NTIA in 2021 (SBOM Minimum
Elements Document). The SBOM Minimum Elements Document was called for by Executive
Order 14028 and was drafted by NTIA as an official government publication. The SBOM
Minimum Elements Document establishes the U.S. Government’s minimum requirements for an
SBOM. CISA has the authority to update the SBOM Minimum Elements Document to further
clarify U.S. Government expectations under the Office of Management and Budget (OMB)
Memo 22-18.

The appendices listed below provide additional context and correspond to the content within.

Appendix A - Highlights the document changes between the published versions

Appendix B - Summarizes this document’s necessary terms and their definitions and
sources

1 NTIA Open Working Group on SBOM Framing. Framing Software Component Transparency:
Establishing a Common Software Bill of Materials (SBOM). November 12, 2019.
2 This document was drafted by the SBOM Tooling and Implementation Working Group, a community-
driven workstream. For more information see CISA's website.
3 NTIA Open Working Group on SBOM Framing. Framing Software Component Transparency:
Establishing a Common Software Bill of Materials (SBOM). October 21, 2021.
4 NTIA. The Minimum Elements for a Software Bill of Materials (SBOM). July 12, 2021.

https://www.ntia.gov/sites/default/files/publications/framingsbom_20191112_0.pdf
https://www.ntia.gov/sites/default/files/publications/framingsbom_20191112_0.pdf
https://www.cisa.gov/sites/default/files/2024-01/SBOM-Community-Legal-Explanation_508c.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

Third Edition 5

Appendix C - Acknowledgements to contributing members of the SBOM Community

Third Edition 6

1 Problem Statement
Modern software systems involve increasingly complex and dynamic software Supply Chains.
Unlike many industries of physical goods, the software Supply Chain has historically not been
required to provide transparency into the composition of software systems. This lack of visibility
has contributed to cybersecurity and Supply Chain risks and increases the costs of software
development, procurement, operations, and maintenance. In our increasingly interconnected
world, risk and cost impact not only individuals and organizations, but also collective goods
(e.g., public safety and national security).

Software Supply Chain Transparency can reduce risks and overall costs by:

● Identifying Components that may impact a Primary Component to enable an
organization’s analysis of risk

● Enhancing vulnerability management and incident response processes
● Reducing unplanned and unproductive work due to complex Supply Chains
● Reducing duplication of effort through data standardization across multiple sectors
● Facilitating the identification of suspicious or counterfeit software Components
● Improving resilience by encouraging stakeholder collaboration and enabling collective

defense against common threats
● Improving accountability of secure software development practices via transparency

In an effort to improve software Supply Chain Transparency, NTIA initially convened a
multistakeholder process, called the Framing Working Group5. CISA adopted the work as part of
the SBOM Tooling and Implementation Working Group. This document is the graduated output
from these community-driven working groups.

1.1 Goals
To achieve greater software Supply Chain Transparency, this document describes an SBOM
meant for software Component information sharing that can be universally applied across the
software ecosystem. This document addresses the creation and sharing of SBOMs, the roles of
participants, and the integration of SBOMs with all Supply Chains.

To scale this model globally, it is necessary to address the difficult problem of universally
identifying and defining certain aspects of software Components by:

(1) Declaring a required minimum set of Baseline Attributes necessary to identify Components
with sufficient relative uniqueness; (2) identifying supplemental, optional Attributes and external
elements beyond the baseline set to serve a variety of SBOM applications; and (3) enabling
correlation of SBOMs with external sources for relevant analysis.

5 NTIA Software Component Transparency Effort. April 28, 2021.

https://www.ntia.doc.gov/SoftwareTransparency

Third Edition 7

2 What is an SBOM?
An SBOM is a formal, machine-readable inventory of software Components and Dependencies,
information about those Components, and their relationships. An SBOM’s inventory should be
as comprehensive as possible and should explicitly state where relationships cannot be
articulated. SBOMs may include open source or commercially licensed software and can be
widely available or access-restricted to protect proprietary or sensitive information.

Many modern software development processes support the automated generation of SBOMs
throughout the software development lifecycle. However, the software Supply Chain still utilizes
older systems that may require manual methods to generate an SBOM.

As documented in “Types of Software Bill of Materials (SBOM),”6 different types of SBOMs
provide specific information about the design, the source code, the built software, or the
deployed software. These SBOMs would naturally be created at different points of the software
lifecycle. In some cases, it is necessary to analyze finished software artifacts with heuristics to
produce an SBOM.

An SBOM is populated with the Baseline Attributes for its listed Components. Gathering and
declaring Component Baseline Attributes enables two goals: the unique identification of
individual Components and the monitoring and managing risk of the software being distributed.
The amount and type of information included in an SBOM may vary depending on the needs of
the specified Consumer(s) within an individual industry or sector. For instance, the license and
copyright holder may not be shared as widely as the Attributes needed for unique Component
identification.

This document establishes a minimum expectation for creating a baseline SBOM that outlines
the minimum amount of information required to support basic and essential features. In addition
to the minimum expectation for each Baseline Attribute, this document also incorporates two
more levels of data maturity, namely recommended practice and aspirational goal. These
additions are to encourage those who have achieved the minimum required to evolve their
SBOM content in maturity and quality.

Defining Baseline Attributes (Section 2.2) and processes (Section 3) allows for rapid adoption
by a variety of stakeholders which can then be further evolved over time. This is one of the
major drivers for establishing a basic set of information as a starting point rather than initially
requiring a more robust set of Attributes that may be more resource-intensive to collect and
maintain. Beyond the minimum baseline SBOM, additional information may be required as
further development and practices mature in different sectors.

Structured data formats and exchange protocols are another key characteristic of a functional
SBOM because they enable machine-readability and automation. Large SBOM Consumer
organizations will need to collate and manage large amounts of data from different Suppliers.

6 CISA Open Working Group on SBOM Tooling and Implementation. Types of Software Bill of Materials
(SBOM) Documents. 2023.

https://www.cisa.gov/resources-tools/resources/types-software-bill-materials-sbom
https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf
https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf

Third Edition 8

Therefore, a machine-readable format is critical to support data Consumers to manage this for
efficiency and expandability. Choosing a specific data format is an important part of this
functionality. Another important aspect is the universal naming of Components. Without a
specific Component naming identification scheme, it would be nearly impossible to identify,
track, and manage Components that are named in an ad hoc fashion.

SBOMs do not provide significant value as independent entities, completely isolated from other
data sources, but are a foundational element for the automation of other activities. For example,
the use of SBOMs in vulnerability management requires a catalog of known vulnerabilities (e.g.,
Common Vulnerabilities and Exposures [CVE]7), associations of vulnerabilities to Components
(e.g., the use of Common Platform Enumeration [CPE]8) in the U.S. National Vulnerability
Database [NVD]9 or Common Security Advisory Framework [CSAF]10) advisories and a means
by which to convey the exploitability or exposure of a vulnerability at different points along
Supply Chains.

SBOMs can also enhance the critical task of software inventory management in many ways.
License management is a significant and difficult compliance task for many of the same reasons
as cybersecurity and the increased transparency offered by SBOMs aids in that also. The use of
SBOM for license management requires that licenses and their restrictions are mapped to
Components.

2.1 SBOM Elements
Initially, participants in the NTIA Software Component Transparency Multistakeholder Process
reviewed existing software identification formats, considered feedback from the various proof of
concept exercises, and thoroughly debated and questioned which elements would be necessary
to create a scalable and functional SBOM system. Many of the answers depended on the
desired use cases that can be built on top of a sufficient quantity and quality of baseline SBOM
data. Since the initial release of this document, implementation of the SBOM elements and
evolution of tooling have grown and illuminated areas of this document where the quantity and
quality of baseline data can be clarified. Systematically and consistently defining and identifying
software Components and their relationships enables the desired use cases to function at scale.
As a minimum, the Baseline Attributes are required. Supplemental elements and Attributes can
be included to enable SBOM use cases identified later in this document.

2.2 Baseline Attributes
The primary purpose of an SBOM is to uniquely and unambiguously identify software
Components and their relationships to one another. Therefore, one necessary element of an
SBOM system is a set of Baseline Attributes that can be used to identify Components and their

7 The CVE Program.
8 NIST. Official Common Platform Enumeration (CPE) Dictionary.
9 NIST. National Vulnerability Database.
10 Oasis. Common Security Advisory Framework (CSAF).

https://www.cve.org/
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/
https://csaf.io/

Third Edition 9

relationships. An SBOM system that follows the guidance and framing proposed in this
document must support these Baseline Attributes. An SBOM system or format may support
supplemental Attributes. Attributes that are unavailable, not applicable, or do not materially
contribute to Component identification are discussed in Section 2.3.

The Author Name, Timestamp, and Primary Component (or Root of Dependencies) Attributes
provide meta-information about an SBOM; the remaining Attributes apply to Components that
are direct or transitive Dependencies of the Primary Component (see the definition of the
Component in Appendix B.)

Three Attribute maturity levels describe the evolving content provided in Attribute entries as well
as possible approaches to achieve increased maturity. If there are no maturity levels for the
Attribute, the instructions presented are the minimum expected. The data maturity levels and
cybersecurity tooling automation support for each Attribute are intended to communicate the
following guidance:

Minimum Expected - This maturity level describes the minimum data elements for
documenting a Primary Component and its Included Components for SBOMs globally.

Recommended Practice - This maturity level describes the addition of Attribute data
that supplements Component identification as well as practices for creating SBOMs.

Aspirational Goal - This maturity level describes areas that creators of SBOMs can
consider for documenting dynamic and/or remote Dependencies (see Appendix B for
descriptions) that can be uniquely and unambiguously identified in an SBOM.

2.2.1 SBOM Meta-Information

2.2.1.1 Author Name
The Author Name is intended to be the name of the entity (e.g., person or organization but not
the tool) that created the SBOM data. Including the Author Name allows the downstream
Consumer to understand the context under which the SBOM was created, providing clarity on
the origins and reliability of the data. The Author Name Attribute should name as many
participants involved in authoring the SBOM data as possible. The tool(s) used to create the
SBOM can also be declared to assist in SBOM data consumption. Multiple entries are
permitted. In some cases, the Supplier Name (see Section 2.2.2.3) of the Primary Component
may not be the Author of the SBOM data. This would indicate the SBOM was not created by the
Supplier.

Minimum Expected - An SBOM must list the entity that prompted the creation of the
SBOM. These entities can be organizations, project teams, or individuals in the software
Supply Chain responsible for the development, deployment, operation and/or support of
software systems including individual software developers. The Author Name Attribute
should include the name of the legal entity and some form of unique identification (e.g.,

Third Edition 10

an email address or website) if possible. If no legal entity name is available, attempt to
uniquely identify the SBOM creator along with contact information.

Recommended Practice - In addition to listing the entity that prompted the creation of
the SBOM, identify tool(s) and version(s) that assisted the Author in the SBOMs
creation.

2.2.1.2 Timestamp
The Timestamp is the date and time that the SBOM was produced. As a minimum
expectation, the Timestamp should be consistent across time zones and locales and use a
common international format, such as ISO 860111 (e.g., 2024-05-23T13:51:37Z).

2.2.1.3 Type
The Type Attribute provides context for how and why the SBOM was created. As discussed in
Section 2 (see footnote 8), different types of SBOMs can be created from different software
artifacts. Documenting the SBOM Type may inform the utility and consumption of the SBOM
that was created. This Attribute is optional and considered an aspirational goal.

2.2.1.4 Primary Component (or Root of Dependencies)
The Primary Component, or root of Dependencies, is the subject of the SBOM or the
foundational Component being described in the SBOM. The Component Attributes detailed in
Section 2.2.2 are also identified for this Component just as they are for the direct and transitive
Components. Maturity levels are described in each Attribute section.

A product-level SBOM may identify a Primary Component that references a set of other
products. See Guidance: “Assembling a Group of Products for SBOM” for more details.12

2.2.2 Component Attributes
After identifying an SBOM’s Primary Component and its Attributes in the SBOM meta-
information, the next step in developing an SBOM is to uniquely enumerate top-level
Components that a Supplier directly includes in the Primary Component. For each Component
in the SBOM, identifying each Attribute should be attempted as indicated in the data maturity
levels. For additional insight on uniquely identifying Components and Suppliers in these
Attributes, see “Software Identification Challenges and Guidance” for a more detailed
examination of Component and Supplier identification.13

Additionally, in order to scale effectively, an SBOM needs to capture transitive, or nested,
Supply Chain relationships between Components to the extent that these dependency

11 ISO. ISO 8601: Date and Time Format.
12 CISA Open Working Group on SBOM Tooling and Implementation. Guidance on Assembling a Group
of Products. January 26, 2024.
13 NTIA Open Working Group on SBOM Framing. Software Identification Challenges and Guidance.
March 30, 2021.

https://www.iso.org/iso-8601-date-and-time-format.html
https://www.cisa.gov/resources-tools/resources/guidance-assembling-group-products
https://www.cisa.gov/resources-tools/resources/guidance-assembling-group-products
https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf

Third Edition 11

relationships are known. Bills of materials for physical Components often describe these
relationships as a “Multi-level BOM.”14

The content of an SBOM can vary in depth and breadth based on the maturity of the entity
creating the SBOM and the creation tools being used. The maturity levels for the depth and
breadth of an SBOM are:

Minimum Expected - SBOMs are expected to identify all static, direct Dependencies of
the root or primary Component.

Recommended Practice - In addition to the direct Dependencies, SBOMs should
identify as many levels of subcomponents as possible. Section 2.3.3 provides more
instruction for when a direct Component’s upstream or subcomponents are unknown.

Aspirational Goal - In addition to the direct Dependencies and subcomponents
identified in the SBOM, efforts are made to uniquely and unambiguously identify
Dependencies that are dynamic and/or remote.

2.2.2.1 Component Name
The Component Name is defined as the public name for a Component defined by the
Originating Supplier of the Component. Component names can convey Supplier names.

As an alternative, Component (and Originating Supplier) Names can also be conveyed using a
generic namespace:name construct where the Originating Supplier Name is used as the
namespace designator. Formats and tooling need to provide the capability to handle multiple
names or aliases.

To illustrate and clarify the concept of Component and Supplier Names using a generic
namespace:name construct, consider the following examples:

Example 1: For a software Component provided by Acme, the Component Name could
be Acme:SecurityModule where "Acme" acts as the namespace designator and
"SecurityModule" is the name of the Component. This clearly conveys that the
Component is supplied by Acme and the Component function.

Example 2: In a document detailing purchasing information, the Component Name might
be listed as Acme:Thermostat:2, indicating that the thermostat Component is a version 2
model supplied by Acme.

Example 3: When referring to SBOM data created by a Supplier other than the Primary
Component Supplier, the Author Name could be ThirdPartySecurityFirm:SBOM:1.2,
where "ThirdPartySecurityFirm" is the namespace indicating the creator of the SBOM,
and "SBOM:1.2" specifies the version of the SBOM.

14 OpenBOM. OpenBoM Fundamentals: All About Multi-Level BOMs. May 16, 2017.

https://medium.com/@openbom/openbom-fundamentals-all-about-openbom-multi-level-boms-f06f50ca7f74

Third Edition 12

These examples demonstrate how using a namespace:name construct can provide clarity on
the Supplier and component relationship, which is especially useful when the SBOM data is
authored by entities other than the primary Supplier. It helps downstream Consumers to identify
the source and trustworthiness of the Components within the software they are using.

As a minimum expectation, the Component name should declare the commonly used public
name for the Component.

2.2.2.2 Version
The Version is a supplier-defined identifier that specifies an update change in the software from
a previously identified version. This Attribute helps to further identify a Component and should
be separate from the Component Name. As there is a wide range of versioning schemes in use,
recording what is provided from the Supplier accurately is the primary goal. Semantic versioning
is preferred.15

If the Component does not have a unique semantic version available to declare, make sure that
a cryptographic hash is provided for the Component. Be aware that this will not indicate the
relative release of the Component to its predecessors and successors.

As a minimum expectation, declare the version string as provided by the Supplier.

2.2.2.3 Supplier Name
Supplier Name is the entity that creates, defines, and identifies a Component. It should be
identified carefully as it is a significant contributor to achieving Component identification at
scale.16 It is worthwhile to mention that mergers and acquisitions can impact the Supplier Name
for the SBOM being created. The Supplier Name should be identified as the Supplier that is
providing the software at the time of the SBOM creation.

As a minimum expectation, the Supplier Name should be declared for all Components.
However, the Supplier Name for supplied software should be declared differently depending on
whether it was incorporated in the Primary Component unmodified or modified from how it was
supplied from the upstream Supplier.

● If the supplied software package or Component was unmodified when included, the
Supplier Name entered is the upstream Supplier’s name with the following guidance:

○ For Suppliers of commercially licensed software, enter the Legal Entity name. If
the Legal Entity name is not globally unique, consider adding the Supplier’s
jurisdiction. In the unlikely case that the Legal Entity name is unknown, consider
using the name of the software vendor from https://nvd.nist.gov/products/cpe.

○ For Suppliers of open-source software, list the project name. If known, add the
host foundation before the project name (e.g., Apache Tomcat). Referencing the

15 Semantic Versioning 2.0.0.
16 See Section 5 of NTIA Open Working Group on SBOM Framing. Software Identification Challenges
and Guidance. March 30, 2021.

https://nvd.nist.gov/products/cpe
https://semver.org/
https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf

Third Edition 13

open-source software (OSS) copyright statements can assist in identifying the
supplier(s) or creator(s) of the software. For example, the copyright statement for
facebook/react17 identifies the supplier Name as “Meta Platforms, Inc and
affiliates.”

○ Although not a recommended practice, if the component’s other attributes
uniquely and unambiguously identify the component and the upstream supplier is
difficult to identify, either:

■ Enter the domain URL of the software and/or the namespace of the
Package URL (PURL).

■ Enter supplier name as unknown.
● If the supplied software package or Component was modified by the Primary

Component’s Supplier before being incorporated, enter the Primary Component’s
Supplier as the Supplier Name. Additionally, enter the Component’s upstream Supplier
in an Attribute field communicating its heritage relationship (e.g., heritage or pedigree)
are possible Attribute fields. See Section 2.2.2.6.3 for possible methods to declare this
relationship. It is necessary to capture the heritage relationship to enable proper
vulnerability monitoring of the Component. The Originating Supplier, if different from the
upstream Supplier, may be a beneficial Attribute to capture for the Component as well.

2.2.2.4 Unique Identifier
Unique identifiers provide additional information to help uniquely define a Component. An
identifier may be unique at a global level or locally unique within a globally unique namespace
(e.g., organization). Both may be declared in the SBOM and provide value.

A unique identifier18 can be generated relative to some globally unique hierarchy, namespace,
reference an existing global coordinate system, or be generated from the content using a
hashing scheme.

Additionally, some vendors may have proprietary unique identifiers within their globally unique
organization namespace. The Component’s cryptographic hash (Section 2.2.2.5) may also
effectively function as a unique identifier.

Examples of unique identifiers:

● CPE19
● PURL20
● Software Identification (SWID) Tags21
● Universal Unique Identifier (UUID) (also known as Globally Unique Identifier [GUID])22

17 Facebook GitHub Repository. React Library License.
18 CISA. Software Identification Ecosystem Analysis. October 2023; NTIA Open Working Group on SBOM
Framing. Software Identification Challenges and Guidance. March 30, 2021.
19 NIST. Official Common Platform Enumeration (CPE) Dictionary.
20 Package-URL GitHub Repository. purl Spec.
21 NIST. Software Identification (SWID) Tagging. April 24, 2024.
22 Wikipedia. Universally Unique Identifier.

https://github.com/facebook/react/blob/main/LICENSE
https://www.cisa.gov/sites/default/files/2023-10/Software-Identification-Ecosystem-Option-Analysis-508c.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf
https://nvd.nist.gov/products/cpe
https://github.com/package-url/purl-spec
https://csrc.nist.gov/projects/Software-Identification-SWID
https://en.wikipedia.org/wiki/Universally_unique_identifier

Third Edition 14

● Software Heritage ID (SWHID)23
● OmniBOR Artifact IDs (formerly known as gitoid namespace relative ids)24

The maturity levels for the unique identifier are:

Minimum Expected - at least one unique identifier should be declared for each
Component listed in the SBOM. A globally unique identifier is preferred.

Recommended Practice - list as many globally unique identifiers as available for the
Component.

2.2.2.5 Cryptographic Hash
A cryptographic hash is an intrinsic identifier for a software Component.25 In addition to hash
values, it must be clear how the hash was generated (i.e., the algorithm used and the object
being hashed) so that it can be reproduced. It is worth considering SBOM format options that
can create a hash of hashes for individual file Components.

It is possible and may be beneficial to provide multiple hashes for a Component or collections of
Components. Suppliers and Authors choose how to define Components, which in turn defines
the scope of the hash. For example, an SBOM could include a hash for a source Component, a
hash for the compiled binary form of that Component, and a hash for a collection of
Components.

The cryptographic hash data maturity levels are:

Minimum Expected - Provide a hash for any Component listed in the SBOM for which
the hash was provided or sufficient information is available to generate the hash. If
sufficient information is not available, indicate as unknown.

Along with the hash, provide the hash algorithm and the Component object being
hashed to enable reproducibility. Hash algorithms accepted at this maturity level are
MD5, SHA1, and SHA2 families, (including SHA256 and SHA512). Using a secure hash
algorithm is recommended. Note that use of MD5 and SHA1 is no longer recommended
and will be formally discontinued in 2030.26

Recommended Practice - Provide at least one hash of the Primary Component at this
maturity level. Along with the minimally expected hash, provide the hash algorithm and
the Component object being hashed to enable reproducibility.

23 Software Heritage. SoftWare Heritage Persistent Identifiers (SWHIDs). April 30, 2021.
24 OmniBOR GitHub Repository. OmniBOR Specification.
25 Roberto Di Cosmo, Morane Gruenpeter, and Stefano Zacchiroli. Identifiers for Digital Objects: The
Case of Software Source Code Preservation. October 5, 2018.
26 NIST. NIST Retires SHA-1 Cryptographic Algorithm. December 15, 2022.

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://github.com/omnibor/spec/blob/main/spec/SPEC.md
https://hal.archives-ouvertes.fr/hal-01865790/file/main.pdf
https://hal.archives-ouvertes.fr/hal-01865790/file/main.pdf
https://www.nist.gov/news-events/news/2022/12/nist-retires-sha-1-cryptographic-algorithm

Third Edition 15

Hash algorithms accepted at this maturity level are those that are cryptographically
secure SHA2 family (SHA-256 and higher) for all Components and system
Dependencies listed in an SBOM. If less cryptographically secure, hashes need to be
included, adding an additional cryptographically secure hash is required.

2.2.2.6 Relationship
The Relationship Attribute describes the association of a Component listed within the SBOM to
other Components. Relationships between Components can be quite varied. As discussed for
“Dependency” in Appendix B, the Components listed in the SBOM may be static, remote,
provided, or dynamic. Considering the Component and the other Components with which it
interacts would inform the type of relationship declared for that Component. The data maturity
levels for relationships declared in an SBOM are:

Minimum Expected - Relationships and relationship completeness declared for the
Primary Component and direct Dependencies.

Recommended Practice - Relationships and relationship completeness declared for all
Included Components listed in the SBOM.

Aspirational Goal - Relationships and relationship completeness to as many dynamic
and remote Components as possible (e.g., loaded Components or services) are
identified.

The following subsections give several types of common relationships to consider declaring in
the SBOM.

2.2.2.6.1 Primary Relationship
A relationship type of primary is used when a Component is the subject of the SBOM. As
discussed in Section 2.2.1.4, the Primary Component defines the subject of the SBOM (e.g.,
Acme Application in Table 2), including cases where the SBOM only includes one Component
(e.g., Carol’s Compression Engine in Table 3).

2.2.2.6.2 “Included In” Relationship
The dependency relationship between Components is inherent in the design of the SBOM
model. The default relationship type is “includes.” This represents the inclusion of or
dependency on a separate upstream Component. To simplify the presentation, this document
reverses the direction of the relationship to “included in.” The choice of direction is not important
to the model, as long as one direction is chosen and used consistently. Using the example from
Section 2.6, the following statements are equivalent:

1. Acme Application v1.1 “includes” Bob’s Browser 2.1.
2. Bob’s Browser v2.1 is “included” in Acme Application v1.1.

It is possible to further refine the “included in” relationship, for example, conveying the difference
between:

Third Edition 16

● Directly including, unchanged, an upstream binary Component.
● Including an upstream source code Component, unchanged, by linking or compiling.

● Selecting an upstream source code Component, modifying (forking) it, and then
including it by linking or compiling.

2.2.2.6.3 Heritage or Pedigree Relationship
Modifying a Component effectively creates a new Component (e.g., a fork) and the modifier
becomes the Supplier for that new Component. It is important in this example to maintain the
heritage of the modified Component and convey that it has been modified. For example, SPDX
supports GENERATED_FROM and DESCENDANT_OF relationship types, while CycloneDX
supports “pedigree” relationships.

2.2.2.6.4 Relationship Completeness
Ideally, every Supplier will create and provide SBOMs for their Components and all Consumers
will obtain complete chains of these authoritative SBOMs. For every Component, Author Name
(2.2.1.1) will equal Supplier Name (2.2.2.3) and, in this ideal world, there will be complete
knowledge of product Components. Until this state is achieved, SBOM authors may want to
make non-authoritative claims or assertions about Components for which the authors are not
the Suppliers. One expected case is that a Supplier wants to assert their belief about upstream
Components for which an authoritative SBOM does not exist.

Relationship completeness can be recorded using a supplemental, optional Attribute. The
following four categories cover the range of an author’s knowledge about another Supplier’s
Components.

1. Unknown. This is the default. There is not yet any claim, knowledge, or assertion about
upstream Components. Immediate upstream Components are not currently known and
therefore not yet listed, or there may not be any upstream Components. This default
value implies the open-world ontological assumption.27

2. None. There are no immediate upstream relationships. As defined by the Supplier, the
Component has no upstream Components.

3. Partial. There is at least one immediate upstream relationship and may or may not be
others. Known relationships are listed.

4. Known. The complete set of immediate upstream relationships is known and listed.

Relationship completeness assertions are intended to only assert the completeness of a
Component’s immediate upstream relationships. Therefore, a Component with an assertion of
“Known” completeness could have a transitive Component with an assertion of “Partial” or
“Unknown” completeness. This is shown in the Section 2.6 example (see Figure 2 and Table 4)
where Acme Application, the example’s Primary Component, is shown as “Known” while its

27 Wikipedia. Closed-World Assumption.

https://en.wikipedia.org/wiki/Open-world_assumption

Third Edition 17

upstream Components are given other assertions based on their immediate upstream
Component completeness.

2.2.2.7 License
A Component’s license identifies the legal terms for supplied software Components. Identifying
the Component license enables transparency of the terms and conditions under which the
software can be used, modified, and distributed.

License transparency is important to software security because unauthorized/unlicensed use of
code may be subject to the inability to use or upgrade software Components (e.g., new features
or patches; see also, “Delayed Open-Source Publication”).28

Additionally, from a workflow perspective, there is significant value in a single artifact that
satisfies both licensing reviews as well as vulnerability/trust reviews. Software vendors will have
to satisfy two workflows, possibly with fractured assessment mechanisms; this will increase
friction and potentially disparate information within an organization regarding software
composition.

In most cases, license information provided for a Component would include a license identifier in
a standard form, i.e., SPDX license identifier.29 If the Component’s license is not available in a
standard form, refer to the specification for the SBOM format being utilized for alternate
methods for declaring the license information.

The Component License data maturity levels are:

Minimum Expected - Provide license information for the Primary Component.

Recommended Practice - Provide license information for as many Components as
possible.

Aspirational Goal - Provide license information for all listed SBOM Components.
Attestation of Concluded License information, i.e., license text and concluded terms and
conditions, is included in the SBOM.

2.2.2.8 Copyright Notice
The Component Copyright Holder identifies the entity that holds exclusive and legal rights to the
listed Component in the SBOM. Copyright information is very helpful for identifying the legal
owner of the Component when triaging a security vulnerability.

Conveying the copyright notices for open-source Components is also a standard condition of
many open source licenses. By including the copyright notices, the SBOM can more fully satisfy

28 Seth Schoen, James Vasile, and Karl Fogel. Delayed Open Source Publication: A Survey of Historical
and Current Practices. January 2, 2024.
29 SPDX. SPDX License List (Version 3.25.0). August 19, 2024.

https://opensource.org/delayed-open-source-publication
https://opensource.org/delayed-open-source-publication
https://spdx.org/licenses/

Third Edition 18

both security and legal workflows simultaneously and not require a second workflow for this
specific license condition.

Additionally, not complying with a fundamental license obligation of many, if not most, of the
open-source licensed software, introduces the security risk of being able to distribute that
Component downstream.

Copyright information may be found in software file headers, LICENSE.txt, NOTICES.txt, THIRD
PARTY.txt or other documents in the Component repository.

The Component Copyright Holder data maturity levels are:

Minimum Expected – Provide copyright notice for the Primary Component.

Recommended Practice – Provide copyright notice for as many Components as
possible.

Aspirational Goal – Provide copyright notice for all listed SBOM Components.

2.3 Undeclared SBOM Data
There are cases where certain Components or Component Attributes may not be available, may
not make sense, may not be shareable due to contractual obligations, or may not materially
contribute to Component identification at the time of an SBOM’s creation. The following are
recommendations for handling undeclared data in known use cases.

Be cautious if you proceed with these alternatives to providing Component Attributes, as the
goal of SBOMs is to provide software Supply Chain Transparency. Providing options for SBOM
data to be undeclared is not intended to promote the obfuscation of the Component data. These
options are meant to enable SBOMs to be created in good faith even when missing data,
conflicting data, or contractual obligations become a barrier. It is expected that, if an SBOM has
undeclared data, the Author continues to work to remove the barriers and reissue the SBOM
with the appropriate data.

2.3.1 Unknown Component Attributes
The lack of first-hand knowledge of the composition of Components significantly contributes to
the need for a method to manage missing or inadequate data for Component identification. If
the Author of the SBOM is not the Supplier of the software Component, the Author may lack the
information or visibility necessary to generate some Attributes. Another factor is the point in time
at which the SBOM (and the Component) is created, roughly: pre-build, at build or packaging
time, and post-build. For example, binary software composition analysis performed post-build by
a non-supplier. Author may detect a Component but not extract the binary Component to
generate a hash.

Third Edition 19

SBOMs must handle cases of missing Attributes gracefully. A basic recommendation is to
always provide all of the Baseline Attributes but explicitly define values that differentiate
between “no assertion” (i.e., data is missing) and “no value” (i.e., the Attribute is not applicable
for this specific SBOM). Alternatively, an SBOM format can permit missing Baseline Attributes
and treat them as default values (i.e., “no assertion” or “no value”). Refer to the specific SBOM
format specifications for implementation.

The Unknown Component Attributes data maturity levels are:

Minimum Expected - Declaring a Baseline Attribute as “no assertion” or “no value” is
only used when necessary to provide an SBOM in a reasonably timely manner.

Recommended Practice - Declaring a Baseline Attribute as “no assertion” or “no value”
is used rarely when sufficient effort matching the potential security risk of that
Component is spent.

Aspirational Goal - When a Baseline Attribute for a Component has been declared as
“no assertion” or “no value”, it is proactively tracked as a compliance gap.

2.3.2 Redacted Components
At times, downstream Distributors of software will have contractual agreements with upstream
Suppliers that require that the inclusion of software not be divulged publicly. Therefore, a
redaction of that Component from the publicly distributed SBOM is needed. In this case, it is
recommended to:

● Indicate the Component as redacted and provide a redaction rationale.
● Remove any Component identifying information but preserve the Component’s version

or cryptographic hash.
● Maintain any of the dependency relationships to or from the redacted Component in a

manner that honors the redaction.

The Redacted Components maturity levels are:

Minimum Expected - A Component’s Attributes that could identify it are redacted only
when a Supplier contract requires it.

Recommended Practice - The contract with a Supplier of a Component that requires
redaction is approached for re-negotiation of a contract that allows Supply Chain
Transparency. Alternatively, a more transparent upstream Supplier is selected for future
software development.

Disclaimer: Your regulatory authorities may require a complete and accurate disclosure of all
manufacturer-developed and third-party software Components as part of an SBOM. Similarly,
customers may also necessitate such disclosure.

Third Edition 20

2.3.3 Unknown Dependencies
When it is common knowledge that supplied software has Dependencies, but the included
Dependencies are not known or only partially known, an SBOM system needs to be able to
indicate that the list of Component Dependencies is incomplete. For example, if a proprietary
operating system is included in your distributed software but many of the included
Dependencies of the operating system are unknown, the SBOM lists the known Dependencies
and an indication that there are additional unknown Dependencies not listed.

The Unknown Dependencies data maturity levels are:

Minimum Expected - Every Direct Dependency to the Primary Component is identified
in the SBOM with all Baseline Attributes identified (or indicated as shown in Section
2.3.1). Deeper Dependencies may be declared as unknown, when necessary. It is
recommended to provide a rationale if Dependencies are declared as unknown.

Recommended Practice - Contact the upstream Supplier for their SBOM to provide the
Component data needed. Provide this information either nested within your Primary
Component’s SBOM or separately.

Aspirational Goal - Use tooling to produce SBOMs for upstream supplied software
where an SBOM cannot be procured. Also, use tooling to gather data from upstream
Supplier SBOMs and your organizational development to assist in producing robust
SBOMs.

More details about how to indicate unknown Dependencies in the assertions for relationship
completeness can be found in Section 2.2.2.6.4.

2.4 Supplemental Information to Support Use Cases
In addition to Baseline Attributes, an SBOM can be supplemented to contain elements and
Component Attributes to support different use cases. The specific information supplemented
depends on the use case and not all supplemental elements or Attributes will support each use
case. Potential SBOM use cases are described in Section 3.6. The following are just a few
examples of supplemental elements and Attributes that could enhance the SBOM data.

Examples of supplemental Attributes:

● End-of-life date or level-of-support for Components.
● Indication of what technologies a Component implements or supports.

Examples of supplemental elements:

Third Edition 21

● Grouping of Components30 (i.e., group by product lines or implemented technologies to
be treated as a special type of upstream Component). For example, knowing that
“component X and Component Y implement DNS” allows a user to identify all DNS-
related Components and treat them as a collection.

● Authenticity and integrity capability (i.e., cryptographic authentication and verification of
SBOM information). An SBOM ecosystem must support the ability to cryptographically
authenticate and verify SBOM information. In general, this means that authors must be
able to digitally sign SBOMs and Consumers must be able to verify signatures.
Authentication and integrity protection requires appropriate digital signature and public
key infrastructure.

30 CISA Open Working Group on SBOM Tooling and Implementation. Guidance on Assembling a Group
of Products. January 26, 2024.

https://www.cisa.gov/resources-tools/resources/guidance-assembling-group-products
https://www.cisa.gov/resources-tools/resources/guidance-assembling-group-products

Third Edition 22

2.5 Mapping to Existing Formats
Table 1 maps Baseline Attributes for both the SPDX and CycloneDX SBOM formats. In addition
to the Baseline Attributes, authors should conform to the specifications of their chosen SBOM
formats.

Table 1: Mapping baseline Component information to existing formats

Attribute ISO/IEC 5962:2021 SPDX 3.0 CycloneDX v1.6 (ECMA-424)

SBOM Author
Name

(6.8) Creator: Core.CreationInfo.createdBy metadata.authors

SBOM
Timestamp

(6.9) Created: Core.CreationInfo.created metadata.timestamp

SBOM Type (6.10) CreatorComment: Software.Sbom.sbomType metadata.lifecycles

SBOM
Primary
Component

(11.1) Relationship:
DESCRIBES

Software.Sbom.rootElement metadata.component

Component
Name

(7.1) PackageName: Software.Package.name components[].name

Component
Version String

(7.3) PackageVersion: Software.Package.packageVers
ion

components[].version

Component
Supplier
Name

(7.5) PackageSupplier: Software.Package.suppliedBy metadata.supplier
components[].supplier

Component
Cryptographic
Hash

(7.10) PackageChecksum:
(7.9) PackageVerificationCode:

Software.Package.verifiedUsing components[].hashes[]

Component
Unique
Identifier

(6.5) SPDX Document
Namespace
(7.2) SPDXID:

Core.Artifact.spdxId
Software.SoftwareArtifact.conte
ntIdentifier
Software.SoftwareArtifact.exter
nalIdentifier (cpe22, cpe23, cve,
gitoid, packageUrl, swhid, swid,
securityOther, other)

serialNumber + version
components[].cpe
components[].purl
components[].swid
components[].omniborId
components[].swhid
components[].evidence.identity

Component
Relationships

(11.1) Relationship: CONTAINS Core.Relationship
contains
dependsOn
hasStaticLink
hasDynamicLink
hasProvidedDependency
hasOptionalDependency

dependencies[]
components[].components

Component
License

(7.15)
PackageLicenseDeclared:
(7.13)
PackageLicenseConcluded:

Core.Relationship
hasConcludedLicense
hasDeclaredLicense

components[].licenses[]

components[].licenses[].acknowle
dgement[declared, concluded]

https://spdx.github.io/spdx-spec/v3.0/model/Core/Classes/CreationInfo/
https://spdx.github.io/spdx-spec/v3.0/model/Core/Properties/createdBy/
https://spdx.github.io/spdx-spec/v3.0/model/Core/Classes/CreationInfo/
https://spdx.github.io/spdx-spec/v3.0/model/Core/Properties/created/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Classes/Sbom/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Properties/sbomType/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Classes/Sbom/
https://spdx.github.io/spdx-spec/v3.0/model/Core/Properties/rootElement/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Classes/Package/
https://spdx.github.io/spdx-spec/v3.0/model/Core/Properties/name/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Classes/Package/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Properties/packageVersion/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Properties/packageVersion/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Classes/Package/
https://spdx.github.io/spdx-spec/v3.0/model/Core/Properties/suppliedBy/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Classes/Package/
https://spdx.github.io/spdx-spec/v3.0/model/Core/Properties/verifiedUsing/
https://spdx.github.io/spdx-spec/v3.0/model/Core/Classes/Artifact/
https://spdx.github.io/spdx-spec/v3.0/model/Core/Properties/spdxId/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Classes/SoftwareArtifact/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Properties/contentIdentifier/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Properties/contentIdentifier/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Classes/SoftwareArtifact/
https://spdx.github.io/spdx-spec/v3.0/model/Core/Classes/ExternalIdentifier/
https://spdx.github.io/spdx-spec/v3.0/model/Core/Classes/ExternalIdentifier/
https://spdx.github.io/spdx-spec/v3.0/model/Core/Classes/Relationship/
https://spdx.github.io/spdx-spec/v3.0/model/Core/Classes/Relationship/

Third Edition 23

(7.14) LicenseInfoFromFiles:
components[].licenses[].licensing
(proprietary)

components[].evidence.licenses[]

Component
Copyright
Holder

(7.17) PackageCopyrightText: Software.SoftwareArtifact.copyri
ghtText

components[].copyright
components[].evidence.copyright

2.6 SBOM Examples
To further illustrate the relationships described in the previous sections, consider these SBOM
examples. Figure 1 and Table 2 show two different approaches to viewing SBOM information
and relationships. These are conceptual representations and not specific formats like SPDX and
CycloneDX. SBOM examples supported by the SPDX31 and CycloneDX32 formats can be
leveraged for additional insight.

In Figure 1 and Table 2, the SBOM authored by Acme includes four Components. One of these,
the Primary Component, is the Acme Application, which defines the subject of the SBOM. Acme
makes a Component named “Application” that uses two upstream Components, Bob’s Browser
and Bingo Buffer. In this example, Acme was able to obtain SBOM information from Bob about
Bob’s Browser, which, in turn, uses Carol’s Compression Engine and possibly other upstream
Components. Acme was not able to obtain SBOMs from Carol or Bingo, so Acme authored
SBOMs for those Components. Carol’s Compression Engine does not include upstream
Components, while Bingo Buffer may or may not have any upstream Components.

31 SPDX GitHub Repository. SPDX Examples.
32 Cyclone DX GitHub Repository. BOM Examples.

https://spdx.github.io/spdx-spec/v3.0/model/Software/Classes/SoftwareArtifact/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Properties/copyrightText/
https://spdx.github.io/spdx-spec/v3.0/model/Software/Properties/copyrightText/
https://github.com/spdx/spdx-examples
https://github.com/CycloneDX/bom-examples

Third Edition 24

Figure 1: Conceptual SBOM graph

Table 2: Conceptual SBOM table33

Component Name Supplier Version Author Hash UID Relationship

Application Acme 1.1 Acme 0x123 234 Primary

|--- Browser Bob 2.1 Bob 0x223 334 Included in

|--- |--- Compression Engine Carol 3.1 Acme 0x323 434 Included in

|--- Buffer Bingo 2.2 Acme 0x423 534 Included in

In the simplest case, a single Component is created entirely from scratch with no
Dependencies: Carol’s Compression Engine v3.1. The SBOM for this Component consists of
only one entry that defines both the Component and the SBOM using the relationship type of
“Primary.” This example is shown in Table 3.

Table 3: Conceptual SBOM table for a single (and Primary) Component
Component Name Supplier

Name
Version
String

Author Hash UID Relationship Relationship
Completeness

Compression Engine Carol 3.1 Carol 0x323 434 Primary None

In Figure 2 and Table 4, the SBOM authored by Acme for the Component “Acme Application”
also has four Components, and the relationship information is now enhanced with assertions
regarding completeness.

33 In all similar tables, the Timestamp Attribute is omitted and other Attribute names shortened for
presentation purposes.

Third Edition 25

Figure 2: Conceptual SBOM graph with upstream relationship completeness

Table 4: Conceptual SBOM table with upstream relationship completeness
Component Name Supplier

Name
Version
String

Author Hash UID Relationship Relationship
Completeness

Application Acme 1.1 Acme 0x123 234 Primary Known

|--- Browser Bob 2.1 Bob 0x223 334 Included in Partial

|--- |--- Compression Engine Carol 3.1 Acme 0x323 434 Included in None

|--- Buffer Bingo 2.2 Acme 0x423 534 Included in Unknown

Acme Application (the subject and Primary Component of this SBOM) asserts “Known” since all
immediate upstream Dependencies are covered. Bob’s Browser asserts “Partial” since at least
Carol’s Compression Engine is upstream of it. Carol’s Compression Engine has no upstream
Components and the assertion for relationship completeness is “None.” Bingo Buffer is known
to be an immediate upstream Dependency of Acme Application, but since nothing is known
upstream of Bingo Buffer, the assertion for relationship completeness is “Unknown.”

3 SBOM Processes
This section describes how to create and exchange SBOM information from three stakeholder
perspectives: those who produce, choose, and operate software. These perspectives are
described in detail in “Use Cases: Roles and Benefits for SBOM Across the Supply Chain.”34

Three particular SBOM use cases — vulnerability management, intellectual property, and
secure Supply Chain software assurance — illustrate an SBOM as an independent data source

34 NTIA. Software Bill of Materials.

https://www.ntia.gov/SBOM

Third Edition 26

as well as how an SBOM can be integrated into typical business processes. These are
discussed in Section 3.6.

3.1 SBOM Creation: How
To create an SBOM, the Supplier defines Components that the Supplier creates themselves,
produces baseline and any supplemental Attributes for those Components, and enumerates all
directly included Components. SBOM information will ideally be generated as an integral part of
the Supplier’s software build and packaging processes, which can be accomplished with
modifications to existing development tools.

Any entity creating, modifying, packaging, and delivering software or software systems is
considered a Supplier and is therefore responsible for defining Components and creating
SBOMs. This includes system integrators, who are essentially considered Suppliers for SBOM
purposes. An organization can also act as a Supplier for internally developed Components.

When SBOMs for Included Components are available from upstream Suppliers, those SBOMs
are provided with or incorporated into the primary SBOM. Where such information is not
available, a Supplier can provide “best effort” SBOMs, which will be indicated by the fact that the
Author for an Included Component SBOM will not be the same as the Supplier of the
Component. Section 2.2.2.6 describes a way for SBOM authors to make assertions about
indirectly included upstream Components for which the Supplier has not provided an SBOM.

An SBOM includes Attributes used to identify Components and supplemental Attributes to
capture characteristics of, or information about, Components. Identity Attributes are essential,
and supplemental Attributes may or may not be required depending on the use case or
application.

An SBOM from the Component’s Supplier serves as a system of record or authoritative source
of information about the Component. As noted elsewhere, some information may need to be
validated with other external sources. For example, vulnerability information about a Component
can sometimes be derived from the NVD using CPE.

3.2 SBOM Creation: When
An SBOM needs to be created when a Component is released. This loosely corresponds to
build, packaging, or deployment activities. As discussed in Section 2 and Section 2.2.1.3,
consider using the Type Attribute of SBOM to indicate the context from which the SBOM was
created or assembled.

A new SBOM should be created when the Component is updated or versioned, including when
new upstream Components are added. Changes to Components are often noted as updates,
upgrades, releases, and patches. Ideally, changes to Components are indicated by a change in
the Version String Attribute. The original SBOM may require updates when new SBOM
information becomes available even if the Components themselves have not changed.

Third Edition 27

Maintaining a current SBOM with information and Baseline Attributes that are as complete as
possible is essential.

When changing an existing Component (including patching or updating), there are two options
for documenting the change: A) as a separate, new Component added to the existing SBOM or
B) as the same Component with a new version string. These two options are illustrated in the
example below.

Table 5: Options for documenting patches or updates in SBOMs

Before update

SBOM Update Options

Separate, new Component (A) Same Component with new version string (B)

Bob’s Browser v1.1 Bob’s Browser v1.1
Bob’s Browser update 37

Bob’s Browser v1.1.1

3.3 SBOM Exchange
It is necessary to exchange SBOM information.35 The primary exchange is directly from a
Supplier to a Consumer through a single downstream Supply Chain link. As part of delivering
the Component, the Supplier also delivers the SBOM, or a means by which the Consumer can
easily obtain the SBOM, such as a URL or other reference. This direct delivery does not
preclude aggregation or cataloging of SBOM information by Suppliers, Consumers, or others.

Due to the variety of different software and device ecosystems, it is unlikely that a single SBOM
exchange mechanism will suffice. They can be provided as additional files as part of a
Component’s distribution or delivery. For devices with storage and power constraints, one
option is to provide a URL to look up SBOM information on a Supplier’s website. Dynamic
access to an SBOM may be a good option for such devices as well. The Internet Engineering
Task Force (IETF) has developed a protocol and format for end user discovery of SBOMs,
whether they are shared on a local device or on a website. The specification is “format neutral,”
meaning it can support SPDX, CycloneDX, and future formats too.

3.4 Software Supply Chain Rules
Participants in a secure software Supply Chain include Suppliers and authors who create SBOM
information, Consumers who receive SBOM information, and as providers of optional
intermediary services such as composition analysis and Dependency analysis. In many cases, a
participant acts as both a Supplier and Consumer, operating somewhere in the middle of a
Supply Chain.

35 CISA Open Working Group on SBOM Sharing and Exchanging. SBOM Sharing Primer. 2024.

https://www.cisa.gov/sites/default/files/2024-05/SBOM%20Sharing%20Primer.pdf

Third Edition 28

Participants follow a set of Supply Chain rules so that SBOM systems function at scale.
Suppliers create SBOMs for Components the Suppliers develop themselves, and Suppliers
define these Components. For upstream Components, Suppliers obtain SBOMs from the
appropriate upstream Suppliers. If upstream SBOMs are not available, the Supplier or other
authors can create SBOMs, even when this involves researching the appropriate entry or
omitting Baseline Attributes.

An SBOM must list a Primary Component, which defines the subject of the SBOM. An SBOM
lists Components that are:

1. Originally created by a Supplier who is the authoritative source of the software
2. Integrated as a Component from an upstream Supplier who also provides an SBOM
3. Integrated as a Component from an upstream Supplier who does not provide an SBOM.

As part of delivering Components to users, Suppliers also deliver the associated SBOM(s) or
provide a means for the Consumer to easily obtain SBOMs.

A set of many interconnected Supply Chains is likely a directed acyclic graph, as shown in
Figures 1, 2, and 3. Ultimate upstream Suppliers only create original Components and do not
include Components (i.e., do not have dependencies) from any other Supplier. In Section 2.6,
Carol is an example of such a Supplier. Components flow downstream along Supply Chains
throughout the graph. At the far ends of the graph, ultimate Consumers only obtain Components
and SBOMs and do not produce Components or SBOMs. Throughout the middle of the graph,
most participants act as both Suppliers and Consumers. Even end-user organizations may act
as Suppliers, producing SBOMs for in-house Components or external Components such as
websites, mobile applications, or Internet of Things (IoT) devices.

Suppliers are responsible for the Components they create and include in an SBOM. Suppliers
are also responsible for providing the collected set of Components to their downstream
Consumers. In a macroeconomic sense, Suppliers are the least cost avoiders, since they have
high-quality authoritative information about their Components and comparatively low costs to
generate and share that information.36 This model distributes the cost to produce SBOM
information to Suppliers.

In this secure Supply Chain network, there are some scenarios where a Supplier may create
SBOMs for upstream Components, where the Supplier is acting as the Author of the SBOM and
not the Supplier of the upstream Component. When a Supplier creates such SBOMs, the
Supplier is expected to clearly convey that they are only the Author of the SBOM and are not
the Supplier of the Component. This informs Consumers of the lack of first-hand, authoritative
SBOM information for the Component. In such a case, the Author Name and Supplier Name
would be different.

The concepts around SBOM exchange and network rules are designed so that those who
choose and operate software can obtain comprehensive lists of Components they use across

36 Paul Rosenzweig. Cybersecurity and the Least Cost Avoider. November 5, 2013.

https://www.lawfareblog.com/cybersecurity-and-least-cost-avoider

Third Edition 29

different Suppliers and Supply Chains. Figure 3 expands the example in Figure 2 to show a user
of two software products (Primary Components) from two different Supply Chains. The user has
two SBOMs: one shown in Table 4 and one in Table 6.

Figure 3: User graph with two Supply Chains

Table 6: Conceptual SBOM table representation for Nancy’s NanoPhone
Component Name Supplier

Name
Version
String

Author Hash UID Relationship Relationship
Completeness

NanoPhone Nancy v1254-a4 Nancy 0x523 237 Primary Partial

|--- OpenLibrary Oscar 0.9.8s Nancy 0xA23 394 Included in Partial

|--- |--- Protocol Paul 2012.11 Nancy 0xB53 934 Included in None

3.5 Roles and Perspectives

3.5.1 Perspectives
Different stakeholders will use SBOMs in complementary, yet distinct, ways. “Roles and
Benefits for SBOM Across the Supply Chain” presents three stakeholder perspectives: those
who produce, choose, and operate software.37 This document borrows the definitions
introduced in “Roles and Benefits for SBOM Across the Supply Chain,” with changes to update
the terms to present use cases.

37 NTIA Open Working Group on SBOM Use Cases and State of Practice. Roles and Benefits for SBOM
Across the Supply Chain. November 2019.

https://ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf
https://ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf

Third Edition 30

3.5.1.1 Produce
This SBOM model is designed with the idea that all Suppliers create SBOMs for their own
Components. When SBOMs for upstream Components are not available, a Supplier may need
to Author an SBOM for a different Supplier’s Component. In the case where a Supplier does not
provide SBOM information, there is a higher likelihood that this lack of clarity will cause
downstream users to assume the worst about the unknown parts of the product. An additional
benefit to Suppliers is the ability to determine which organization to contact to get fixes for
vulnerabilities in upstream Components.

3.5.1.2 Choose
SBOMs can be used by prospective Choosers (e.g., development, acquisition, or procurement)
considering the use of a Component or product that has an associated SBOM. Choosers are
likely to be interested in information directly attributable to the product, such as its baseline
Component or license information. Supplemental SBOM information about vulnerabilities,
current certification status, and level of support can factor into the selection process.

3.5.1.3 Operate
In any industry, Operators struggle with the lack of complete information on Components or
products they are expected to support. An SBOM becomes a very relevant source of this
information to provide visibility into the software and its Components. Some of this information
may be static, such as licensing information. However, due to the dynamic nature of software,
some of this information may change or be updated after a Component’s initial distribution.

Most of the information of ongoing interest for Operators is expected to be found in SBOM
updates. Operators can also use the current information to verify the state of the software
before it is to be in production at their site or business.

3.6 SBOM Use Cases

The core focus of this SBOM model and the Baseline Attributes is to identify Components and
their relationships. Supplemental elements and Attributes such as new Attributes, relationship
types, or external data connections, can be added to SBOMs to enable different use cases. This
section highlights several notable SBOM use cases.

3.6.1 Vulnerability Management and VEX
Vulnerability management is one of the more prominent SBOM use cases. Today, it is often an
expensive and time-consuming effort to determine whether a vulnerable upstream Component
is used, and if the vulnerability is present or exploitable in downstream Components. SBOM and
Vulnerability Exploitability eXchange (VEX) data helps Suppliers, users, and other defenders
more quickly and accurately assess the risk posed by vulnerable Components, which are often
hidden behind opaque Supply Chain relationships.

Third Edition 31

While upstream Components are typically included to provide functionality, it is common for
parts of the Component to be unused. A software program (component) might include a library
(component) but only call some of the functions provided by the library. Additionally, certain
features of a Component may be disabled during build or packaging. This becomes important in
some SBOM use cases, particularly vulnerability management. For example, if a vulnerability
affects an upstream Component, the vulnerability may or may not affect downstream
Components.38 VEX is designed to convey the status (not affected, affected, fixed, under
investigation) of vulnerabilities in Components.39

Vulnerability management requires sources of vulnerability information (such as CVE, security
advisories from Suppliers, [e.g. in CSAF, and the NVD]), mapping of vulnerabilities to
Components (such as CPE as used in the NVD), and a way to convey vulnerability or
exploitability status (such as VEX). While VEX was developed to address the vulnerability
management use case, VEX is not limited to use with SBOMs nor expected to be included in
the SBOM itself. One concern is the incorrect detection of vulnerabilities based on limited
information such as version strings, protocol banners, or other heuristics. VEX can be used to
indicate that software is not vulnerable or exploitable, even when the SBOM indicates the
presence of vulnerabilities in upstream Components. This can save Suppliers and users the
costs of managing, producing, and applying security updates for Components that are not
affected.

Additionally, including the end-of-life date and level-of-support for the Components as
supplemental to the SBOM provides the entity performing an impact assessment of a
vulnerability with crucial information for mitigation options.

3.6.2 Intellectual Property

A number of Intellectual Property (IP) use cases can be improved with better inventory data.
Managing software license and copyright notice information (including constraints on use or
redistribution) for Included Components and tracking entitlement (permission to use copies or
features of Components) are two common use cases. A notable market exists for software
composition analysis tools to help determine the contents of Components, in part to identify
license requirements. SBOM data would improve knowledge about composition without
depending on binary analysis tools. Both SPDX and CycloneDX were initially designed to
convey license and entitlement information.

This use case requires associations of different licenses and types of licenses to Components
and a way to evaluate the net effect of different Components with different licenses combined
into an assembled product.

38 Veracode. Open Source Components: Vulnerability Information Sources and Vulnerability Likelihood.
July 19, 2018.
39NTIA Multistakeholder Process. Vulnerability-Exploitability eXchange (VEX)—An Overview. September
27, 2021.

https://www.ntia.doc.gov/files/ntia/publications/wysopal_swct_kickoff_perspective.pdf
https://www.ntia.gov/files/ntia/publications/vex_one-page_summary.pdf

Third Edition 32

3.6.3 Secure Supply Chain Software Assurance

Secure Supply Chain of the source and integrity of Components requires information about the
pedigree and provenance of Components, such as how they were built and packaged, who
created and modified them, and their chain of custody through the Supply Chain. As with the
other use cases, the secure Supply Chain documentation will require additional Attributes about
Components, different relationship types, and likely different Supplier information.

3.7 Tool Support
The availability of SBOM generation and management tools will be critical for widespread
adoption. Available tools and lists of tools include the CycloneDX Tool Center40 and SPDX
Tools41. SBOM functionality will need to be integrated into software development, packaging,
and asset management systems.

40 Cyclone DX. Tool Center.
41 SPDX. Tools.

https://cyclonedx.org/tool-center/
https://spdx.dev/use/tools/

Third Edition 33

4 Conclusion
Organizations around the world are facing operational and secure Supply Chain software
assurance questions about the software actively deployed in their environments. Much of this
software handles critical parts of their business activities while providing little or no visibility into
the software’s Components. Questions about known vulnerabilities continue to go unanswered
because of this lack of visibility. One way to increase cybersecurity automation and software
transparency, enable enterprises to better manage the security of their networks, and enable
vendors to monitor their Components is to establish a harmonized model for creating and
sharing SBOMs.

To be useful to end-user organizations, an SBOM needs to include baseline identity and
relationship information that allows software Components to be correlated and linked as they
move through the secure software Supply Chain. In the interest of rapid adoption, a set of
minimum Baseline Attributes has been defined. These Attributes generally align with existing
formats such as SPDX and CycloneDX. As noted in this document, however, limiting an SBOM
to only this baseline information is not sufficient to enable a number of identified use cases and
applications.

As the use of SBOMs matures and becomes more common, the ready availability of baseline
SBOM information will lead to further work to establish more coordinated and standardized
methods for sharing and managing SBOMs. One of the reasons to standardize the structure
and content of the SBOM is to enable these next steps. Tooling will also be an important factor
in the adoption and further evolution of SBOMs.

Overall, the goal is to ensure that the necessary information, captured and exchanged through
SBOMs, is available to those who need it, thereby leading to better asset management, IP
management, vulnerability management, implementation of mitigations, and risk management.

Third Edition 34

Appendix A Edition Changes
Significant changes between the Second Edition (2021) and Third Edition (2024) include:

● Updated language throughout Section 2 to
○ Clarify SBOM expectations for each Baseline Attribute
○ Add two Baseline Attributes - license and copyright holder
○ Introduce maturity levels for multiple Attributes
○ Update mapping of Attributes to SPDX and CycloneDX formats
○ Remove SWID as an existing format
○ Add options for undeclared SBOM information in Section 2.3
○ Add the concept of risk management as part of the SBOM consumption process

● Terminology section:
○ Moved content to Appendix B
○ Added necessary terms due to updates

● Made various editorial improvements and clarifications

Significant changes between the First Edition (2019) and Second Edition (2021) include:

● Added Timestamp to Baseline Attributes
● Clarified requirements aspects of Baseline Attributes
● Added CycloneDX as an additional format
● Removed Existing Formats (previously Section 3), renumbered accordingly
● Updated language in Baseline Attributes and Terminology
● Updated and harmonized language across working groups
● Updated figures and tables
● Made various editorial improvements and clarifications

Third Edition 35

Appendix B Terminology
The following terms have specific meaning within the scope of this document and within the
overall multistakeholder process. Each definition is written to be a direct grammatical
replacement for the term.

Term Definition External Source

Attribute An Attribute is a characteristic of, or information
about, a Component. Baseline Attributes are
defined in Section 2.2. Other Attributes can be
defined as needed to meet specific use cases and
applications.

This document

Author The Author reflects the source of the metadata,
which could come from the creator of the software
being described in the SBOM, the upstream
Component Supplier, or some third-party analysis
tool. Note that this is not the Author of the software
itself, just the source of the descriptive data.

SBOM Minimum
Elements
Document

Chooser The Chooser is the person/organization that
decides the software/products/Suppliers for use

Roles and Benefits
for SBOM Across
the Supply Chain

Component A Component is a unit of software defined by a
Supplier at the time it is built, packaged, or
delivered.

Many Components contain subcomponents, or
upstream Components. Examples of Components
include a software product, a library, or a single
file.

○ Depending on the perspective in the Supply
Chain, a Component (often the Primary
Component) can be considered to be a product,
intermediate good, final good, or final assembled
good.

This document

Concluded
License

Frequently multiple licenses may be found in a
Component that have different constraints. After
resolving the conditions an overall license for the
Component can be declared by the SBOM
Supplier.

This document

Third Edition 36

Term Definition External Source

Consumer The Consumer receives the transferred SBOM.
This could include roles such as third parties,
authors, integrators, and end users.

SBOM Sharing
Lifecycle
Report/SBOM
Sharing Roles and
Considerations

Dependency A Dependency is the relationship between two
Components.

Many Components are dependent on other
Components to function well. A Dependency could
be described in the following ways. Multiple
descriptors could be used for a single Component.

○ Static: both Components are included in the
software.

○ Dynamic: at least one of the Components in
the relationship is loaded upon request.

○ Remote: at least one of the Components in
the relationship is called and runs outside of
the Primary Component software being
described in the SBOM.

○ Provided: at least one of the Components in
the relationship is expected to be provided by
the software environment on which the
Component is run.

○ Direct: at least one of the Components in the
relationship is the Primary Component.

○ Transitive: neither Component in the
relationship is the Primary Component,
meaning that the Component is nested at
least two levels.

This document

Distributor A Distributor receives SBOMs for the purpose of
sharing them with SBOM Consumers or other
Distributors.

SBOM Sharing
Lifecycle
Report/SBOM
Sharing Roles and
Considerations

Included
Component

An Included Component is any Component that is
in the distributed software (e.g., masked layers
within a container of an image).

This document

Third Edition 37

Term Definition External Source

Operator An Operator is a person/organization that operates
the software Component.

Roles and Benefits
for SBOM Across
the Supply Chain

Originating
Supplier

If the Component identified in the SBOM
originated from a different person or organization
than identified as Component Supplier, the
Originating Supplier defines where or whom the
Component originally came from. In some cases,
a Component may be created and originally
distributed by a different third party than the
Supplier of the Component.

For example, the SBOM identifies the Component
as glibc and the Component Supplier as Red Hat,
but the Free Software Foundation is the
Originating Supplier.

This document

Software Bill of
Materials (SBOM)

An SBOM is a formal, machine-readable inventory
of software Components and Dependencies,
information about those Components, and their
relationships.

This document

Supplier The Supplier refers to the originator or
manufacturer of the software Component.

SBOM Minimum
Elements
Document

Supply Chain A Supply Chain is a linked set of resources
and processes between multiple tiers of
developers that begins with the sourcing of
products and services and extends through
the design, development, manufacturing,
processing, handling, and delivery of products
and services to the acquirer.

Glossary | CSRC
(nist.gov)

Supply Chain
Transparency

Supply Chain Transparency is the amount of
information that can be gathered about a
Supplier, product, or service and how far
through the Supply Chain this information can
be obtained.

Glossary | CSRC
(nist.gov)

Third Edition 38

Appendix C Third Edition Acknowledgements
This Framing document was drafted and revised by a diverse set of experts from across the
software ecosystem and is intended to capture a threshold of the current state of practice and
expectations for software transparency in 2024.

The leaders of the Tooling and Implementation Working Group, Melissa Rhodes (Medtronic)
and Kate Stewart (Linux Foundation), thank the members of the working group for their time,
expertise, and dedication to the content presented in this document’s third edition. We also
thank our hosts from CISA, namely Allan Friedman, Victoria Ontiveros, and Jeremiah Stoddard,
for their assistance in bringing this working group together and hosting us as we worked through
and finalized the content.

Acknowledgements do not imply endorsement of this document and its content.

Alicia Bond, Vigilant Ops
Andrea Grover, University of Nebraska at Omaha
Bill Pelletier, ZOLL Medical
Bob Haack, Johnson & Johnson
Bob Martin, The MITRE Corporation
Brian Benavidez, BIOTRONIK
Brian Smithson, TrustCB
Cassie Crossley, Schneider Electric
Charles Long, Arthrex
Charlie Hart, Hitachi America Ltd.
Chris Gregoire, Boston Scientific
Daniel John Audette, Hewlett Packard Enterprise (HPE)
David Dillard, Veritas Technologies LLC
Deanna Medina, United Airlines
Derek Garcia, University of Hawaii at Manoa
Dick Wilkins, Phoenix Technologies
Dmitry Raidman, Cybeats
Duncan Sparrell, sFractal Consulting
Evgeny Martinov, Cybellum Technologies
Eyal Traitel, Cybellum Technologies
Gary O’Neall, Source Auditor and SPDX
Girish Jorapurkar, Splunk
Ian Dunbar-Hall, Lockheed Martin and OpenSSF
Isaac Hepworth, Google
Isabella Donders, Security Pattern
Ixchel Ruiz, Karakun
James Tramel, Tesco
Jesse Martinez, State of Iowa
John Cavanaugh, Internet Infrastructure Services Corp

Third Edition 39

John Nuckles, Office of Director of National Intelligence
Joyabrata Ghosh, CARIAD SE
Dr. LaTrea Shine, Lenovo
Lynn Westfall, The Modem Lisa
Manish Jadhav, Vigilant Ops
Melissa Chase, The MITRE Corporation
Michael Bandor, Carnegie Mellon University/Software Engineering Institute (CMU/SEI)
Penny Rose Boulet, Hewlett Packard Enterprise (HPE)
Pete Allor, Red Hat
Prosunjit Biswas, Adobe
Ria Schalnat, Hewlett Packard Enterprise (HPE)
Ricardo Reyes, Tidelift
Ryan Stewart, SAP
Saquib Saifee, IBM
Sangeetha Shankar, The MathWorks Inc.
Scott Van Eps, Danaher
Shweta Singh, MathWorks
Sridhar Balasubramanian, NetApp, Inc.
Steve Springett, ServiceNow and the OWASP Foundation
Sunny Ahn, SettleTop
Syed Zaeem (‘Z’) Hosain, Aeris Communications Inc.
Timothy Walsh, Mayo Clinic
Vijaya Ramamurthi, Accenture Federal Services
Viktor Petersson, sbomify

	Framing Software Component Transparency: Establishing a Common Software Bill of Materials (SBOM)
	Table of Contents
	About This Document
	1 Problem Statement
	1.1 Goals

	2 What is an SBOM?
	2.1 SBOM Elements
	2.2 Baseline Attributes
	2.2.1 SBOM Meta-Information
	2.2.1.1 Author Name
	2.2.1.2 Timestamp
	2.2.1.3 Type
	2.2.1.4 Primary Component (or Root of Dependencies)

	2.2.2 Component Attributes
	2.2.2.1 Component Name
	2.2.2.2 Version
	2.2.2.3 Supplier Name
	2.2.2.4 Unique Identifier
	2.2.2.5 Cryptographic Hash
	2.2.2.6 Relationship
	2.2.2.7 License
	2.2.2.8 Copyright Notice

	2.3 Undeclared SBOM Data
	2.3.1 Unknown Component Attributes
	2.3.2 Redacted Components
	2.3.3 Unknown Dependencies

	2.4 Supplemental Information to Support Use Cases
	2.5 Mapping to Existing Formats
	2.6 SBOM Examples

	3 SBOM Processes
	3.1 SBOM Creation: How
	3.2 SBOM Creation: When
	3.3 SBOM Exchange
	3.4 Software Supply Chain Rules
	3.5 Roles and Perspectives
	3.5.1 Perspectives
	3.5.1.1 Produce
	3.5.1.2 Choose
	3.5.1.3 Operate

	3.6 SBOM Use Cases
	3.6.1 Vulnerability Management and VEX
	3.6.2 Intellectual Property
	3.6.3 Secure Supply Chain Software Assurance

	3.7 Tool Support

	4 Conclusion
	Appendix A Edition Changes
	Appendix B Terminology
	Appendix C Third Edition Acknowledgements

